mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-04 01:57:53 +01:00
6352 lines
251 KiB
C++
6352 lines
251 KiB
C++
//
|
||
// MIT license
|
||
// Copyright (C) 2024 Intel Corporation
|
||
// SPDX-License-Identifier: MIT
|
||
//
|
||
|
||
//
|
||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
// See https://llvm.org/LICENSE.txt for license information.
|
||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
//
|
||
|
||
#include <algorithm>
|
||
#include <assert.h>
|
||
#include <atomic>
|
||
#include <cinttypes>
|
||
#include <cstddef>
|
||
#include <cstdint>
|
||
#include <cstdlib>
|
||
#include <float.h>
|
||
#include <limits>
|
||
#include <stdint.h>
|
||
#include <stdio.h>
|
||
#include <vector>
|
||
#include <cmath>
|
||
#include <iostream>
|
||
#include <fstream>
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <regex>
|
||
|
||
#include <sycl/sycl.hpp>
|
||
#include <sycl/half_type.hpp>
|
||
|
||
#include "ggml-sycl.h"
|
||
#include "ggml.h"
|
||
#include "ggml-backend-impl.h"
|
||
|
||
#include "ggml-sycl/backend.hpp"
|
||
|
||
bool ggml_sycl_loaded(void);
|
||
void ggml_sycl_free_data(struct ggml_tensor * tensor);
|
||
void ggml_sycl_copy_to_device(struct ggml_tensor * tensor);
|
||
void ggml_sycl_set_main_device(int main_device);
|
||
void ggml_sycl_set_mul_mat_q(bool mul_mat_q);
|
||
void ggml_sycl_get_device_description(int device, char * description, size_t description_size);
|
||
bool ggml_backend_is_sycl(ggml_backend_t backend);
|
||
int ggml_backend_sycl_get_device(ggml_backend_t backend);
|
||
static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer);
|
||
static inline int get_sycl_env(const char *env_name, int default_val);
|
||
static inline int get_work_group_size(const sycl::device& device);
|
||
|
||
void dev2dev_memcpy(sycl::queue &q_dst, sycl::queue &q_src, void *ptr_dst,
|
||
const void *ptr_src, size_t size) {
|
||
char *host_buf = (char *)malloc(size);
|
||
q_src.memcpy(host_buf, (const char *)ptr_src, size).wait();
|
||
q_dst.memcpy((char *)ptr_dst, host_buf, size).wait();
|
||
free(host_buf);
|
||
}
|
||
|
||
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
|
||
typedef void (*ggml_sycl_func_t)(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
|
||
typedef void (*ggml_sycl_op_mul_mat_t)(
|
||
ggml_backend_sycl_context & ctx,
|
||
const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
|
||
const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
|
||
float *dst_dd_i, const int64_t row_low, const int64_t row_high,
|
||
const int64_t src1_ncols, const int64_t src1_padded_row_size,
|
||
const queue_ptr &stream);
|
||
typedef void (*ggml_sycl_op_flatten_t)(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1,
|
||
ggml_tensor *dst, const float *src0_dd,
|
||
const float *src1_dd, float *dst_dd,
|
||
const queue_ptr &main_stream);
|
||
|
||
static __dpct_inline__ float warp_reduce_sum(float x,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
#pragma unroll
|
||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||
/*
|
||
DPCT1096:98: The right-most dimension of the work-group used in the SYCL
|
||
kernel that calls this function may be less than "32". The function
|
||
"dpct::permute_sub_group_by_xor" may return an unexpected result on the
|
||
CPU device. Modify the size of the work-group to ensure that the value
|
||
of the right-most dimension is a multiple of "32".
|
||
*/
|
||
x += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), x, mask);
|
||
}
|
||
return x;
|
||
}
|
||
|
||
static __dpct_inline__ sycl::float2
|
||
warp_reduce_sum(sycl::float2 a, const sycl::nd_item<3> &item_ct1) {
|
||
#pragma unroll
|
||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||
a.x() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.x(),
|
||
mask);
|
||
a.y() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.y(),
|
||
mask);
|
||
}
|
||
return a;
|
||
}
|
||
|
||
static __dpct_inline__ float warp_reduce_max(float x,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
#pragma unroll
|
||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||
/*
|
||
DPCT1096:97: The right-most dimension of the work-group used in the SYCL
|
||
kernel that calls this function may be less than "32". The function
|
||
"dpct::permute_sub_group_by_xor" may return an unexpected result on the
|
||
CPU device. Modify the size of the work-group to ensure that the value
|
||
of the right-most dimension is a multiple of "32".
|
||
*/
|
||
x = sycl::fmax(x, dpct::permute_sub_group_by_xor(
|
||
item_ct1.get_sub_group(), x, mask));
|
||
}
|
||
return x;
|
||
}
|
||
|
||
static __dpct_inline__ float op_repeat(const float a, const float b) {
|
||
return b;
|
||
GGML_UNUSED(a);
|
||
}
|
||
|
||
static __dpct_inline__ float op_add(const float a, const float b) {
|
||
return a + b;
|
||
}
|
||
|
||
static __dpct_inline__ float op_mul(const float a, const float b) {
|
||
return a * b;
|
||
}
|
||
|
||
static __dpct_inline__ float op_div(const float a, const float b) {
|
||
return a / b;
|
||
}
|
||
|
||
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
|
||
static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
||
int ne0, int ne1, int ne2, int ne3,
|
||
int ne10, int ne11, int ne12, int ne13,
|
||
/*int s0, */ int s1, int s2, int s3,
|
||
/*int s10,*/ int s11, int s12, int s13,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
const int i0s = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||
item_ct1.get_local_id(2);
|
||
const int i1 = (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
||
item_ct1.get_local_id(1));
|
||
const int i2 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
|
||
item_ct1.get_local_id(0)) /
|
||
ne3;
|
||
const int i3 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
|
||
item_ct1.get_local_id(0)) %
|
||
ne3;
|
||
|
||
if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
|
||
return;
|
||
}
|
||
|
||
const int i11 = i1 % ne11;
|
||
const int i12 = i2 % ne12;
|
||
const int i13 = i3 % ne13;
|
||
|
||
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
|
||
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
||
const size_t i_dst = i_src0;
|
||
|
||
const src0_t * src0_row = src0 + i_src0;
|
||
const src1_t * src1_row = src1 + i_src1;
|
||
dst_t * dst_row = dst + i_dst;
|
||
|
||
for (int i0 = i0s; i0 < ne0;
|
||
i0 += item_ct1.get_local_range(2) * item_ct1.get_group_range(2)) {
|
||
const int i10 = i0 % ne10;
|
||
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
||
}
|
||
}
|
||
|
||
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
|
||
static void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
||
int ne0, int ne1, int ne2, int ne3,
|
||
int ne10, int ne11, int ne12, int ne13,
|
||
/*int s0, */ int s1, int s2, int s3,
|
||
/*int s10,*/ int s11, int s12, int s13,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
|
||
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||
item_ct1.get_local_id(2);
|
||
|
||
const int i3 = i/(ne2*ne1*ne0);
|
||
const int i2 = (i/(ne1*ne0)) % ne2;
|
||
const int i1 = (i/ne0) % ne1;
|
||
const int i0 = i % ne0;
|
||
|
||
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
|
||
return;
|
||
}
|
||
|
||
const int i11 = i1 % ne11;
|
||
const int i12 = i2 % ne12;
|
||
const int i13 = i3 % ne13;
|
||
|
||
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
|
||
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
||
const size_t i_dst = i_src0;
|
||
|
||
const src0_t * src0_row = src0 + i_src0;
|
||
const src1_t * src1_row = src1 + i_src1;
|
||
dst_t * dst_row = dst + i_dst;
|
||
|
||
const int i10 = i0 % ne10;
|
||
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
||
}
|
||
|
||
static void acc_f32(const float * x, const float * y, float * dst, const int ne,
|
||
const int ne10, const int ne11, const int ne12,
|
||
const int nb1, const int nb2, int offset, const sycl::nd_item<3> &item_ct1) {
|
||
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||
item_ct1.get_local_id(2);
|
||
if (i >= ne) {
|
||
return;
|
||
}
|
||
int src1_idx = i - offset;
|
||
int oz = src1_idx / nb2;
|
||
int oy = (src1_idx - (oz * nb2)) / nb1;
|
||
int ox = src1_idx % nb1;
|
||
if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
|
||
dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
|
||
} else {
|
||
dst[i] = x[i];
|
||
}
|
||
}
|
||
|
||
static void gelu_f32(const float * x, float * dst, const int k,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
const float GELU_COEF_A = 0.044715f;
|
||
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
||
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||
item_ct1.get_local_id(2);
|
||
|
||
if (i >= k) {
|
||
return;
|
||
}
|
||
|
||
float xi = x[i];
|
||
dst[i] = 0.5f * xi *
|
||
(1.0f +
|
||
sycl::tanh(SQRT_2_OVER_PI * xi * (1.0f + GELU_COEF_A * xi * xi)));
|
||
}
|
||
|
||
static void silu_f32(const float * x, float * dst, const int k,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||
item_ct1.get_local_id(2);
|
||
|
||
if (i >= k) {
|
||
return;
|
||
}
|
||
dst[i] = x[i] / (1.0f + sycl::native::exp(-x[i]));
|
||
}
|
||
|
||
static void gelu_quick_f32(const float *x, float *dst, int k,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
const float GELU_QUICK_COEF = -1.702f;
|
||
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||
item_ct1.get_local_id(2);
|
||
if (i >= k) {
|
||
return;
|
||
}
|
||
dst[i] = x[i] * (1.0f / (1.0f + sycl::native::exp(GELU_QUICK_COEF * x[i])));
|
||
}
|
||
|
||
static void tanh_f32(const float *x, float *dst, int k,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||
item_ct1.get_local_id(2);
|
||
if (i >= k) {
|
||
return;
|
||
}
|
||
dst[i] = sycl::tanh((float)(x[i]));
|
||
}
|
||
|
||
static void relu_f32(const float * x, float * dst, const int k,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||
item_ct1.get_local_id(2);
|
||
|
||
if (i >= k) {
|
||
return;
|
||
}
|
||
dst[i] = sycl::fmax((float)(x[i]), (float)0);
|
||
}
|
||
|
||
static void hardsigmoid_f32(const float * x, float * dst, const int k,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||
item_ct1.get_local_id(2);
|
||
|
||
if (i >= k) {
|
||
return;
|
||
}
|
||
dst[i] = sycl::fmin(1.0f, sycl::fmax(0.0f, (x[i] + 3.0f) / 6.0f));
|
||
}
|
||
|
||
static void hardswish_f32(const float * x, float * dst, const int k,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||
item_ct1.get_local_id(2);
|
||
|
||
if (i >= k) {
|
||
return;
|
||
}
|
||
dst[i] = x[i] * sycl::fmin(1.0f, sycl::fmax(0.0f, (x[i] + 3.0f) / 6.0f));
|
||
}
|
||
|
||
static void leaky_relu_f32(const float *x, float *dst, const int k, const float negative_slope,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||
item_ct1.get_local_id(2);
|
||
if (i >= k) {
|
||
return;
|
||
}
|
||
dst[i] = sycl::fmax((float)(x[i]), (float)0) +
|
||
sycl::fmin((float)(x[i]), 0.0f) * negative_slope;
|
||
}
|
||
|
||
static void sqr_f32(const float * x, float * dst, const int k,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||
item_ct1.get_local_id(2);
|
||
|
||
if (i >= k) {
|
||
return;
|
||
}
|
||
dst[i] = x[i] * x[i];
|
||
}
|
||
|
||
static void norm_f32(const float * x, float * dst, const int ncols, const float eps,
|
||
const sycl::nd_item<3> &item_ct1, sycl::float2 *s_sum, int block_size) {
|
||
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
|
||
item_ct1.get_local_id(1);
|
||
const int tid = item_ct1.get_local_id(2);
|
||
|
||
sycl::float2 mean_var = sycl::float2(0.f, 0.f);
|
||
|
||
for (int col = tid; col < ncols; col += block_size) {
|
||
const float xi = x[row*ncols + col];
|
||
mean_var.x() += xi;
|
||
mean_var.y() += xi * xi;
|
||
}
|
||
|
||
// sum up partial sums
|
||
mean_var = warp_reduce_sum(mean_var, item_ct1);
|
||
if (block_size > WARP_SIZE) {
|
||
|
||
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
|
||
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
|
||
if (lane_id == 0) {
|
||
s_sum[warp_id] = mean_var;
|
||
}
|
||
/*
|
||
DPCT1118:0: SYCL group functions and algorithms must be encountered in
|
||
converged control flow. You may need to adjust the code.
|
||
*/
|
||
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||
mean_var = s_sum[lane_id];
|
||
mean_var = warp_reduce_sum(mean_var, item_ct1);
|
||
}
|
||
|
||
const float mean = mean_var.x() / ncols;
|
||
const float var = mean_var.y() / ncols - mean * mean;
|
||
const float inv_std = sycl::rsqrt(var + eps);
|
||
|
||
for (int col = tid; col < ncols; col += block_size) {
|
||
dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
|
||
}
|
||
}
|
||
|
||
static void concat_f32(const float *x,const float *y, float *dst, const int ne0, const int ne02,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
int nidx = item_ct1.get_local_id(2) +
|
||
item_ct1.get_group(2) * item_ct1.get_local_range(2);
|
||
if (nidx >= ne0) {
|
||
return;
|
||
}
|
||
// operation
|
||
int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
|
||
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
|
||
if (item_ct1.get_group(0) < ne02) { // src0
|
||
int offset_src =
|
||
nidx + item_ct1.get_group(1) * ne0 +
|
||
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
|
||
dst[offset_dst] = x[offset_src];
|
||
} else {
|
||
int offset_src =
|
||
nidx + item_ct1.get_group(1) * ne0 +
|
||
(item_ct1.get_group(0) - ne02) * ne0 * item_ct1.get_group_range(1);
|
||
dst[offset_dst] = y[offset_src];
|
||
}
|
||
}
|
||
|
||
static void upscale_f32(const float *x, float *dst, const int nb00, const int nb01,
|
||
const int nb02, const int nb03, const int ne10, const int ne11,
|
||
const int ne12, const int ne13, const float sf0, const float sf1,
|
||
const float sf2, const float sf3, const sycl::nd_item<1> &item_ct1) {
|
||
int index = item_ct1.get_local_id(0) +
|
||
item_ct1.get_group(0) * item_ct1.get_local_range(0);
|
||
if (index >= ne10 * ne11 * ne12 * ne13) {
|
||
return;
|
||
}
|
||
// operation
|
||
int i10 = index % ne10;
|
||
int i11 = (index / ne10) % ne11;
|
||
int i12 = (index / (ne10 * ne11)) % ne12;
|
||
int i13 = (index / (ne10 * ne11 * ne12)) % ne13;
|
||
|
||
int i00 = i10 / sf0;
|
||
int i01 = i11 / sf1;
|
||
int i02 = i12 / sf2;
|
||
int i03 = i13 / sf3;
|
||
|
||
dst[index] = *(float *)((char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00);
|
||
}
|
||
|
||
static void pad_f32(const float *x, float *dst, const int ne0, const int ne00, const int ne01, const int ne02,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
int nidx = item_ct1.get_local_id(2) +
|
||
item_ct1.get_group(2) * item_ct1.get_local_range(2);
|
||
if (nidx >= ne0) {
|
||
return;
|
||
}
|
||
|
||
// operation
|
||
int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
|
||
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
|
||
if (nidx < ne00 && item_ct1.get_group(1) < ne01 &&
|
||
item_ct1.get_group(0) < ne02) {
|
||
int offset_src = nidx + item_ct1.get_group(1) * ne00 +
|
||
item_ct1.get_group(0) * ne00 * ne01;
|
||
dst[offset_dst] = x[offset_src];
|
||
} else {
|
||
dst[offset_dst] = 0.0f;
|
||
}
|
||
}
|
||
|
||
static void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps,
|
||
const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) {
|
||
int start = item_ct1.get_group(2) * group_size;
|
||
int end = start + group_size;
|
||
|
||
start += item_ct1.get_local_id(2);
|
||
|
||
if (end >= ne_elements) {
|
||
end = ne_elements;
|
||
}
|
||
|
||
float tmp = 0.0f; // partial sum for thread in warp
|
||
|
||
for (int j = start; j < end; j += block_size) {
|
||
tmp += x[j];
|
||
}
|
||
|
||
tmp = warp_reduce_sum(tmp, item_ct1);
|
||
if (block_size > WARP_SIZE) {
|
||
|
||
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
|
||
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
|
||
if (lane_id == 0) {
|
||
s_sum[warp_id] = tmp;
|
||
}
|
||
/*
|
||
DPCT1118:1: SYCL group functions and algorithms must be encountered in
|
||
converged control flow. You may need to adjust the code.
|
||
*/
|
||
/*
|
||
DPCT1065:54: Consider replacing sycl::nd_item::barrier() with
|
||
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
|
||
better performance if there is no access to global memory.
|
||
*/
|
||
item_ct1.barrier();
|
||
tmp = s_sum[lane_id];
|
||
tmp = warp_reduce_sum(tmp, item_ct1);
|
||
}
|
||
|
||
float mean = tmp / group_size;
|
||
tmp = 0.0f;
|
||
|
||
for (int j = start; j < end; j += block_size) {
|
||
float xi = x[j] - mean;
|
||
dst[j] = xi;
|
||
tmp += xi * xi;
|
||
}
|
||
|
||
tmp = warp_reduce_sum(tmp, item_ct1);
|
||
if (block_size > WARP_SIZE) {
|
||
|
||
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
|
||
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
|
||
if (lane_id == 0) {
|
||
s_sum[warp_id] = tmp;
|
||
}
|
||
/*
|
||
DPCT1118:2: SYCL group functions and algorithms must be encountered in
|
||
converged control flow. You may need to adjust the code.
|
||
*/
|
||
/*
|
||
DPCT1065:55: Consider replacing sycl::nd_item::barrier() with
|
||
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
|
||
better performance if there is no access to global memory.
|
||
*/
|
||
item_ct1.barrier();
|
||
tmp = s_sum[lane_id];
|
||
tmp = warp_reduce_sum(tmp, item_ct1);
|
||
}
|
||
|
||
float variance = tmp / group_size;
|
||
float scale = sycl::rsqrt(variance + eps);
|
||
for (int j = start; j < end; j += block_size) {
|
||
dst[j] *= scale;
|
||
}
|
||
}
|
||
|
||
static void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps,
|
||
const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) {
|
||
const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
|
||
item_ct1.get_local_id(1);
|
||
const int tid = item_ct1.get_local_id(2);
|
||
|
||
float tmp = 0.0f; // partial sum for thread in warp
|
||
|
||
for (int col = tid; col < ncols; col += block_size) {
|
||
const float xi = x[row*ncols + col];
|
||
tmp += xi * xi;
|
||
}
|
||
|
||
// sum up partial sums
|
||
tmp = warp_reduce_sum(tmp, item_ct1);
|
||
if (block_size > WARP_SIZE) {
|
||
|
||
int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
|
||
int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
|
||
if (lane_id == 0) {
|
||
s_sum[warp_id] = tmp;
|
||
}
|
||
/*
|
||
DPCT1118:3: SYCL group functions and algorithms must be encountered in
|
||
converged control flow. You may need to adjust the code.
|
||
*/
|
||
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||
tmp = s_sum[lane_id];
|
||
tmp = warp_reduce_sum(tmp, item_ct1);
|
||
}
|
||
|
||
const float mean = tmp / ncols;
|
||
const float scale = sycl::rsqrt(mean + eps);
|
||
|
||
for (int col = tid; col < ncols; col += block_size) {
|
||
dst[row*ncols + col] = scale * x[row*ncols + col];
|
||
}
|
||
}
|
||
|
||
static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
const int ix = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||
item_ct1.get_local_id(2);
|
||
|
||
if (ix >= kx_padded) {
|
||
return;
|
||
}
|
||
|
||
const int iy = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
||
item_ct1.get_local_id(1);
|
||
|
||
const int i_padded = iy*kx_padded + ix;
|
||
|
||
block_q8_1 * y = (block_q8_1 *) vy;
|
||
|
||
const int ib = i_padded / QK8_1; // block index
|
||
const int iqs = i_padded % QK8_1; // quant index
|
||
|
||
const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
|
||
float amax = sycl::fabs((float)xi);
|
||
float sum = xi;
|
||
|
||
#pragma unroll
|
||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||
amax = sycl::fmax(amax, dpct::permute_sub_group_by_xor(
|
||
item_ct1.get_sub_group(), amax, mask));
|
||
sum +=
|
||
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), sum, mask);
|
||
}
|
||
|
||
const float d = amax / 127;
|
||
const int8_t q = amax == 0.0f ? 0 : sycl::round(xi / d);
|
||
|
||
y[ib].qs[iqs] = q;
|
||
|
||
if (iqs > 0) {
|
||
return;
|
||
}
|
||
|
||
reinterpret_cast<sycl::half &>(y[ib].ds.x()) = d;
|
||
reinterpret_cast<sycl::half &>(y[ib].ds.y()) = sum;
|
||
}
|
||
|
||
template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||
static void k_get_rows(
|
||
const void * src0, const int32_t * src1, dst_t * dst,
|
||
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
|
||
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
|
||
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
|
||
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
|
||
size_t s10, size_t s11, size_t s12,
|
||
const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
|
||
|
||
const int i00 = (item_ct1.get_group(2) * item_ct1.get_local_range(2) +
|
||
item_ct1.get_local_id(2)) *
|
||
2;
|
||
const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
||
item_ct1.get_local_id(1);
|
||
const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
|
||
item_ct1.get_local_id(0)) /
|
||
ne12;
|
||
const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
|
||
item_ct1.get_local_id(0)) %
|
||
ne12;
|
||
|
||
if (i00 >= ne00) {
|
||
return;
|
||
}
|
||
|
||
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||
|
||
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||
const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
|
||
|
||
const int ib = i00/qk; // block index
|
||
const int iqs = (i00%qk)/qr; // quant index
|
||
const int iybs = i00 - i00%qk; // dst block start index
|
||
const int y_offset = qr == 1 ? 1 : qk/2;
|
||
|
||
// dequantize
|
||
dfloat2 v;
|
||
dequantize_kernel(src0_row, ib, iqs, v);
|
||
|
||
dst_row[iybs + iqs + 0] = v.x();
|
||
dst_row[iybs + iqs + y_offset] = v.y();
|
||
}
|
||
|
||
template<typename src0_t, typename dst_t>
|
||
static void k_get_rows_float(
|
||
const src0_t * src0, const int32_t * src1, dst_t * dst,
|
||
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
|
||
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
|
||
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
|
||
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
|
||
size_t s10, size_t s11, size_t s12,
|
||
const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
|
||
|
||
const int i00 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
|
||
item_ct1.get_local_id(2);
|
||
const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
||
item_ct1.get_local_id(1);
|
||
const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
|
||
item_ct1.get_local_id(0)) /
|
||
ne12;
|
||
const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
|
||
item_ct1.get_local_id(0)) %
|
||
ne12;
|
||
|
||
if (i00 >= ne00) {
|
||
return;
|
||
}
|
||
|
||
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||
|
||
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||
const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
|
||
|
||
dst_row[i00] = src0_row[i00];
|
||
}
|
||
|
||
static void mul_mat_p021_f16_f32(
|
||
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
|
||
const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
|
||
const sycl::half *x = (const sycl::half *)vx;
|
||
|
||
const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
||
item_ct1.get_local_id(1);
|
||
const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
|
||
item_ct1.get_local_id(0);
|
||
const int channel_x = channel / (nchannels_y / nchannels_x);
|
||
|
||
const int nrows_y = ncols_x;
|
||
const int nrows_dst = nrows_x;
|
||
const int row_dst = row_x;
|
||
|
||
float tmp = 0.0f;
|
||
|
||
for (int col_x0 = 0; col_x0 < ncols_x;
|
||
col_x0 += item_ct1.get_local_range(2)) {
|
||
const int col_x = col_x0 + item_ct1.get_local_id(2);
|
||
|
||
if (col_x >= ncols_x) {
|
||
break;
|
||
}
|
||
|
||
// x is transposed and permuted
|
||
const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
|
||
const float xi =
|
||
sycl::vec<sycl::half, 1>(x[ix])
|
||
.convert<float, sycl::rounding_mode::automatic>()[0];
|
||
|
||
const int row_y = col_x;
|
||
|
||
|
||
// y is not transposed but permuted
|
||
const int iy = channel*nrows_y + row_y;
|
||
|
||
tmp += xi * y[iy];
|
||
}
|
||
|
||
// dst is not transposed and not permuted
|
||
const int idst = channel*nrows_dst + row_dst;
|
||
|
||
// sum up partial sums and write back result
|
||
#pragma unroll
|
||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||
tmp +=
|
||
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
||
}
|
||
|
||
if (item_ct1.get_local_id(2) == 0) {
|
||
dst[idst] = tmp;
|
||
}
|
||
}
|
||
|
||
static void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
|
||
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
|
||
const int row_stride_x, const int channel_stride_x, const int channel_x_divisor,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
|
||
const sycl::half *x = (const sycl::half *)vx;
|
||
|
||
const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
||
item_ct1.get_local_id(1);
|
||
const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
|
||
item_ct1.get_local_id(0);
|
||
const int channel_x = channel / channel_x_divisor;
|
||
|
||
const int nrows_y = ncols_x;
|
||
const int nrows_dst = nrows_x;
|
||
const int row_dst = row_x;
|
||
|
||
const int idst = channel*nrows_dst + row_dst;
|
||
|
||
float tmp = 0.0f;
|
||
|
||
for (int col_x0 = 0; col_x0 < ncols_x;
|
||
col_x0 += item_ct1.get_local_range(2)) {
|
||
const int col_x = col_x0 + item_ct1.get_local_id(2);
|
||
|
||
if (col_x >= ncols_x) {
|
||
break;
|
||
}
|
||
|
||
const int row_y = col_x;
|
||
|
||
const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
|
||
const int iy = channel*nrows_y + row_y;
|
||
|
||
const float xi =
|
||
sycl::vec<sycl::half, 1>(x[ix])
|
||
.convert<float, sycl::rounding_mode::automatic>()[0];
|
||
|
||
tmp += xi * y[iy];
|
||
}
|
||
|
||
// sum up partial sums and write back result
|
||
#pragma unroll
|
||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||
tmp +=
|
||
dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
|
||
}
|
||
|
||
if (item_ct1.get_local_id(2) == 0) {
|
||
dst[idst] = tmp;
|
||
}
|
||
}
|
||
|
||
static void cpy_1_f32_f32(const char * cxi, char * cdsti) {
|
||
const float * xi = (const float *) cxi;
|
||
float * dsti = (float *) cdsti;
|
||
|
||
*dsti = *xi;
|
||
}
|
||
|
||
static void cpy_1_f32_f16(const char * cxi, char * cdsti) {
|
||
const float * xi = (const float *) cxi;
|
||
sycl::half *dsti = (sycl::half *)cdsti;
|
||
|
||
*dsti = sycl::vec<float, 1>(*xi)
|
||
.convert<sycl::half, sycl::rounding_mode::automatic>()[0];
|
||
}
|
||
|
||
static void cpy_1_f16_f16(const char * cxi, char * cdsti) {
|
||
const sycl::half *xi = (const sycl::half *)cxi;
|
||
sycl::half *dsti = (sycl::half *)cdsti;
|
||
|
||
*dsti = *xi;
|
||
}
|
||
|
||
static void cpy_1_f16_f32(const char * cxi, char * cdsti) {
|
||
const sycl::half *xi = (const sycl::half *)cxi;
|
||
float * dsti = (float *) cdsti;
|
||
|
||
*dsti = *xi;
|
||
}
|
||
|
||
static void cpy_1_i16_i16(const char * cxi, char * cdsti) {
|
||
const int16_t *xi = (const int16_t *)cxi;
|
||
int16_t *dsti = (int16_t *)cdsti;
|
||
|
||
*dsti = *xi;
|
||
}
|
||
|
||
static void cpy_1_i32_i32(const char * cxi, char * cdsti) {
|
||
const int32_t *xi = (const int32_t *)cxi;
|
||
int32_t *dsti = (int32_t *)cdsti;
|
||
|
||
*dsti = *xi;
|
||
}
|
||
|
||
template <cpy_kernel_t cpy_1>
|
||
static void cpy_f32_f16(const char * cx, char * cdst, const int ne,
|
||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||
const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
|
||
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||
item_ct1.get_local_id(2);
|
||
|
||
if (i >= ne) {
|
||
return;
|
||
}
|
||
|
||
// determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
|
||
// then combine those indices with the corresponding byte offsets to get the total offsets
|
||
const int i03 = i/(ne00 * ne01 * ne02);
|
||
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||
|
||
const int i13 = i/(ne10 * ne11 * ne12);
|
||
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
|
||
|
||
cpy_1(cx + x_offset, cdst + dst_offset);
|
||
}
|
||
|
||
static void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
|
||
const float * xi = (const float *) cxi;
|
||
block_q8_0 * dsti = (block_q8_0 *) cdsti;
|
||
|
||
float amax = 0.0f; // absolute max
|
||
|
||
for (int j = 0; j < QK8_0; j++) {
|
||
const float v = xi[j];
|
||
amax = sycl::fmax(amax, sycl::fabs((float)v));
|
||
}
|
||
|
||
const float d = amax / ((1 << 7) - 1);
|
||
const float id = d ? 1.0f/d : 0.0f;
|
||
|
||
dsti->d = d;
|
||
|
||
for (int j = 0; j < QK8_0; ++j) {
|
||
const float x0 = xi[j]*id;
|
||
|
||
dsti->qs[j] = sycl::round((float)x0);
|
||
}
|
||
}
|
||
|
||
static void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
|
||
const float * xi = (const float *) cxi;
|
||
block_q4_0 * dsti = (block_q4_0 *) cdsti;
|
||
|
||
float amax = 0.0f;
|
||
float vmax = 0.0f;
|
||
|
||
for (int j = 0; j < QK4_0; ++j) {
|
||
const float v = xi[j];
|
||
if (amax < sycl::fabs((float)v)) {
|
||
amax = sycl::fabs((float)v);
|
||
vmax = v;
|
||
}
|
||
}
|
||
|
||
const float d = vmax / -8;
|
||
const float id = d ? 1.0f/d : 0.0f;
|
||
|
||
dsti->d = d;
|
||
|
||
for (int j = 0; j < QK4_0/2; ++j) {
|
||
const float x0 = xi[0 + j]*id;
|
||
const float x1 = xi[QK4_0/2 + j]*id;
|
||
|
||
const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 8.5f));
|
||
const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 8.5f));
|
||
|
||
dsti->qs[j] = xi0;
|
||
dsti->qs[j] |= xi1 << 4;
|
||
}
|
||
}
|
||
|
||
static void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
|
||
const float * xi = (const float *) cxi;
|
||
block_q4_1 * dsti = (block_q4_1 *) cdsti;
|
||
|
||
float vmin = FLT_MAX;
|
||
float vmax = -FLT_MAX;
|
||
|
||
for (int j = 0; j < QK4_1; ++j) {
|
||
const float v = xi[j];
|
||
|
||
if (v < vmin) vmin = v;
|
||
if (v > vmax) vmax = v;
|
||
}
|
||
|
||
const float d = (vmax - vmin) / ((1 << 4) - 1);
|
||
const float id = d ? 1.0f/d : 0.0f;
|
||
|
||
dsti->dm.x() = d;
|
||
dsti->dm.y() = vmin;
|
||
|
||
for (int j = 0; j < QK4_1/2; ++j) {
|
||
const float x0 = (xi[0 + j] - vmin)*id;
|
||
const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
|
||
|
||
const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 0.5f));
|
||
const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 0.5f));
|
||
|
||
dsti->qs[j] = xi0;
|
||
dsti->qs[j] |= xi1 << 4;
|
||
}
|
||
}
|
||
|
||
template <cpy_kernel_t cpy_blck, int qk>
|
||
static void cpy_f32_q(const char * cx, char * cdst, const int ne,
|
||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||
const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
|
||
const int i = (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||
item_ct1.get_local_id(2)) *
|
||
qk;
|
||
|
||
if (i >= ne) {
|
||
return;
|
||
}
|
||
|
||
const int i03 = i/(ne00 * ne01 * ne02);
|
||
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||
|
||
const int i13 = i/(ne10 * ne11 * ne12);
|
||
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||
const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
||
|
||
cpy_blck(cx + x_offset, cdst + dst_offset);
|
||
}
|
||
|
||
static float rope_yarn_ramp(const float low, const float high, const int i0) {
|
||
const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
|
||
return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
|
||
}
|
||
|
||
struct rope_corr_dims {
|
||
float v[4];
|
||
};
|
||
|
||
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
|
||
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
|
||
static void rope_yarn(
|
||
float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
|
||
float * cos_theta, float * sin_theta
|
||
) {
|
||
// Get n-d rotational scaling corrected for extrapolation
|
||
float theta_interp = freq_scale * theta_extrap;
|
||
float theta = theta_interp;
|
||
if (ext_factor != 0.0f) {
|
||
float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
|
||
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
|
||
|
||
// Get n-d magnitude scaling corrected for interpolation
|
||
mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale);
|
||
}
|
||
*cos_theta = sycl::cos(theta) * mscale;
|
||
*sin_theta = sycl::sin(theta) * mscale;
|
||
}
|
||
|
||
// rope == RoPE == rotary positional embedding
|
||
template<typename T, bool has_pos>
|
||
static void rope(
|
||
const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
|
||
float ext_factor, float attn_factor, rope_corr_dims corr_dims
|
||
,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
||
item_ct1.get_local_id(1));
|
||
|
||
if (col >= ncols) {
|
||
return;
|
||
}
|
||
|
||
const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||
item_ct1.get_local_id(2);
|
||
const int i = row*ncols + col;
|
||
const int i2 = row/p_delta_rows;
|
||
|
||
const int p = has_pos ? pos[i2] : 0;
|
||
const float theta_base = p * dpct::pow(freq_base, -float(col) / ncols);
|
||
|
||
float cos_theta, sin_theta;
|
||
rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||
|
||
const float x0 = x[i + 0];
|
||
const float x1 = x[i + 1];
|
||
|
||
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||
dst[i + 1] = x0*sin_theta + x1*cos_theta;
|
||
}
|
||
|
||
template<typename T, bool has_pos, bool has_freq_facs>
|
||
static void rope_neox(
|
||
const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims,
|
||
const float * freq_factors, const sycl::nd_item<3> &item_ct1) {
|
||
const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
||
item_ct1.get_local_id(1));
|
||
|
||
if (col >= ncols) {
|
||
return;
|
||
}
|
||
|
||
const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||
item_ct1.get_local_id(2);
|
||
const int ib = col / n_dims;
|
||
const int ic = col % n_dims;
|
||
|
||
if (ib > 0) {
|
||
const int i = row*ncols + ib*n_dims + ic;
|
||
|
||
dst[i + 0] = x[i + 0];
|
||
dst[i + 1] = x[i + 1];
|
||
|
||
return;
|
||
}
|
||
|
||
const int i = row*ncols + ib*n_dims + ic/2;
|
||
const int i2 = row/p_delta_rows;
|
||
|
||
float cur_rot = inv_ndims * ic - ib;
|
||
|
||
const int p = has_pos ? pos[i2] : 0;
|
||
const float freq_factor = has_freq_facs ? freq_factors[ic/2] : 1.0f;
|
||
|
||
const float theta_base =
|
||
p * freq_scale * dpct::pow(theta_scale, col / 2.0f)/freq_factor;
|
||
|
||
float cos_theta, sin_theta;
|
||
rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||
|
||
const float x0 = x[i + 0];
|
||
const float x1 = x[i + n_dims/2];
|
||
|
||
dst[i + 0] = x0*cos_theta - x1*sin_theta;
|
||
dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||
}
|
||
|
||
static void k_sum_rows_f32(const float * x, float * dst, const int ncols,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
const int row = item_ct1.get_group(1);
|
||
const int col = item_ct1.get_local_id(2);
|
||
|
||
float sum = 0.0f;
|
||
for (int i = col; i < ncols; i += item_ct1.get_local_range(2)) {
|
||
sum += x[row * ncols + i];
|
||
}
|
||
|
||
sum = warp_reduce_sum(sum, item_ct1);
|
||
|
||
if (col == 0) {
|
||
dst[row] = sum;
|
||
}
|
||
}
|
||
|
||
|
||
template<typename T>
|
||
static inline void ggml_sycl_swap(T & a, T & b) {
|
||
T tmp = a;
|
||
a = b;
|
||
b = tmp;
|
||
}
|
||
|
||
template <ggml_sort_order order>
|
||
__dpct_inline__ static void
|
||
k_argsort_f32_i32(const float *x, int *dst, const int ncols, int ncols_pad,
|
||
const sycl::nd_item<3> &item_ct1, uint8_t *dpct_local) {
|
||
// bitonic sort
|
||
int col = item_ct1.get_local_id(2);
|
||
int row = item_ct1.get_group(1);
|
||
|
||
if (col >= ncols_pad) {
|
||
return;
|
||
}
|
||
|
||
const float * x_row = x + row * ncols;
|
||
auto dst_row = (int *)dpct_local;
|
||
|
||
// initialize indices
|
||
dst_row[col] = col;
|
||
|
||
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||
|
||
for (int k = 2; k <= ncols_pad; k *= 2) {
|
||
for (int j = k / 2; j > 0; j /= 2) {
|
||
int ixj = col ^ j;
|
||
if (ixj > col) {
|
||
if ((col & k) == 0) {
|
||
if (dst_row[col] >= ncols ||
|
||
(dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
|
||
x_row[dst_row[col]] > x_row[dst_row[ixj]] :
|
||
x_row[dst_row[col]] < x_row[dst_row[ixj]]))
|
||
) {
|
||
ggml_sycl_swap(dst_row[col], dst_row[ixj]);
|
||
}
|
||
} else {
|
||
if (dst_row[ixj] >= ncols ||
|
||
(dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
|
||
x_row[dst_row[col]] < x_row[dst_row[ixj]] :
|
||
x_row[dst_row[col]] > x_row[dst_row[ixj]]))
|
||
) {
|
||
ggml_sycl_swap(dst_row[col], dst_row[ixj]);
|
||
}
|
||
}
|
||
}
|
||
/*
|
||
DPCT1118:1: SYCL group functions and algorithms must be encountered
|
||
in converged control flow. You may need to adjust the code.
|
||
*/
|
||
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||
}
|
||
}
|
||
|
||
// copy the result to dst without the padding
|
||
if (col < ncols) {
|
||
dst[row * ncols + col] = dst_row[col];
|
||
}
|
||
}
|
||
|
||
|
||
static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
const int col = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
||
item_ct1.get_local_id(1);
|
||
const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||
item_ct1.get_local_id(2);
|
||
|
||
if (col >= ncols) {
|
||
return;
|
||
}
|
||
|
||
const int i = row*ncols + col;
|
||
//dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
|
||
//dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
|
||
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
|
||
}
|
||
|
||
|
||
template <bool vals_smem, int ncols_template, int block_size_template>
|
||
static void soft_max_f32(const float * x, const float * mask, float * dst, const int ncols_par,
|
||
const int nrows_y, const float scale, const float max_bias, const float m0,
|
||
const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
|
||
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
|
||
|
||
const int tid = item_ct1.get_local_id(2);
|
||
const int rowx = item_ct1.get_group(2);
|
||
const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
|
||
|
||
const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template;
|
||
|
||
const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
|
||
const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
|
||
|
||
float slope = 1.0f;
|
||
|
||
// ALiBi
|
||
if (max_bias > 0.0f) {
|
||
const uint32_t h = rowx/nrows_y; // head index
|
||
|
||
const float base = h < n_head_log2 ? m0 : m1;
|
||
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||
|
||
slope = sycl::pow(base, float(exp));
|
||
}
|
||
|
||
float * vals = vals_smem ? buf + WARP_SIZE : dst + rowx*ncols;
|
||
float max_val = -INFINITY;
|
||
|
||
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
||
const int col = col0 + tid;
|
||
|
||
if (ncols_template == 0 && col >= ncols) {
|
||
break;
|
||
}
|
||
|
||
const int ix = rowx*ncols + col;
|
||
const int iy = rowy*ncols + col;
|
||
|
||
const float val = x[ix]*scale + (mask ? slope*mask[iy] : 0.0f);
|
||
|
||
vals[col] = val;
|
||
max_val = sycl::max(max_val, val);
|
||
}
|
||
|
||
// find the max value in the block
|
||
max_val = warp_reduce_max(max_val, item_ct1);
|
||
if (block_size > WARP_SIZE) {
|
||
if (warp_id == 0) {
|
||
buf[lane_id] = -INFINITY;
|
||
}
|
||
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||
|
||
if (lane_id == 0) {
|
||
buf[warp_id] = max_val;
|
||
}
|
||
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||
|
||
max_val = buf[lane_id];
|
||
max_val = warp_reduce_max(max_val, item_ct1);
|
||
}
|
||
|
||
float tmp = 0.f;
|
||
|
||
#pragma unroll
|
||
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
||
const int col = col0 + tid;
|
||
if (ncols_template == 0 && col >= ncols) {
|
||
break;
|
||
}
|
||
|
||
const float val = sycl::native::exp(vals[col] - max_val);
|
||
tmp += val;
|
||
vals[col] = val;
|
||
}
|
||
|
||
// find the sum of exps in the block
|
||
tmp = warp_reduce_sum(tmp, item_ct1);
|
||
if (block_size > WARP_SIZE) {
|
||
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||
if (warp_id == 0) {
|
||
buf[lane_id] = 0.f;
|
||
}
|
||
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||
|
||
if (lane_id == 0) {
|
||
buf[warp_id] = tmp;
|
||
}
|
||
item_ct1.barrier(sycl::access::fence_space::local_space);
|
||
|
||
tmp = buf[lane_id];
|
||
tmp = warp_reduce_sum(tmp, item_ct1);
|
||
}
|
||
|
||
const float inv_sum = 1.f / tmp;
|
||
|
||
#pragma unroll
|
||
for (int col0 = 0; col0 < ncols; col0 += block_size) {
|
||
const int col = col0 + tid;
|
||
|
||
if (ncols_template == 0 && col >= ncols) {
|
||
return;
|
||
}
|
||
|
||
const int idst = rowx*ncols + col;
|
||
dst[idst] = vals[col] * inv_sum;
|
||
}
|
||
}
|
||
|
||
static void scale_f32(const float * x, float * dst, const float scale, const int k,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||
item_ct1.get_local_id(2);
|
||
|
||
if (i >= k) {
|
||
return;
|
||
}
|
||
|
||
dst[i] = scale * x[i];
|
||
}
|
||
|
||
static void clamp_f32(const float * x, float * dst, const float min, const float max, const int k,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
||
item_ct1.get_local_id(2);
|
||
|
||
if (i >= k) {
|
||
return;
|
||
}
|
||
|
||
dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
|
||
}
|
||
|
||
template <typename T>
|
||
static void im2col_kernel(const float *x, T *dst, int offset_delta,
|
||
int IW, int IH, int OW, int KW, int KH,
|
||
int pelements, int CHW, int s0, int s1, int p0,
|
||
int p1, int d0, int d1,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
const int i = item_ct1.get_local_id(2) +
|
||
item_ct1.get_group(2) * item_ct1.get_local_range(2);
|
||
if (i >= pelements) {
|
||
return;
|
||
}
|
||
|
||
const int ksize = OW * (KH > 1 ? KW : 1);
|
||
const int kx = i / ksize;
|
||
const int kd = kx * ksize;
|
||
const int ky = (i - kd) / OW;
|
||
const int ix = i % OW;
|
||
|
||
const int64_t iiw = ix * s0 + kx * d0 - p0;
|
||
const int64_t iih = item_ct1.get_group(1) * s1 + ky * d1 - p1;
|
||
|
||
const int64_t offset_dst =
|
||
(item_ct1.get_group(1) * OW + ix) * CHW +
|
||
(item_ct1.get_group(0) * (KW * KH) + ky * KW + kx);
|
||
|
||
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||
dst[offset_dst] =
|
||
sycl::vec<float, 1>(0.0f)
|
||
.convert<sycl::half, sycl::rounding_mode::automatic>()[0];
|
||
} else {
|
||
const int64_t offset_src = item_ct1.get_group(0) * offset_delta;
|
||
dst[offset_dst] =
|
||
sycl::vec<float, 1>(x[offset_src + iih * IW + iiw])
|
||
.convert<sycl::half, sycl::rounding_mode::automatic>()[0];
|
||
}
|
||
}
|
||
|
||
template <typename Ti, typename To>
|
||
static void pool2d_nchw_kernel(
|
||
const int ih, const int iw, const int oh, const int ow,
|
||
const int kh, const int kw, const int sh, const int sw,
|
||
const int ph, const int pw, const int parallel_elements,
|
||
const Ti* src, To* dst, const enum ggml_op_pool op,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
int idx = item_ct1.get_local_id(2) +
|
||
item_ct1.get_group(2) * item_ct1.get_local_range(2);
|
||
if (idx >= parallel_elements) {
|
||
return;
|
||
}
|
||
|
||
const int I_HW = ih * iw;
|
||
const int O_HW = oh * ow;
|
||
const int nc = idx / O_HW;
|
||
const int cur_oh = idx % O_HW / ow;
|
||
const int cur_ow = idx % O_HW % ow;
|
||
const Ti* i_ptr = src + nc * I_HW;
|
||
To* o_ptr = dst + nc * O_HW;
|
||
const int start_h = cur_oh * sh - ph;
|
||
const int bh = sycl::max(0, start_h);
|
||
const int eh = sycl::min(ih, start_h + kh);
|
||
const int start_w = cur_ow * sw - pw;
|
||
const int bw = sycl::max(0, start_w);
|
||
const int ew = sycl::min(iw, start_w + kw);
|
||
|
||
To res = 0;
|
||
|
||
switch (op) {
|
||
case GGML_OP_POOL_AVG: res = 0; break;
|
||
case GGML_OP_POOL_MAX: res = -FLT_MAX; break;
|
||
}
|
||
|
||
for (int i = bh; i < eh; i += 1) {
|
||
for (int j = bw; j < ew; j += 1) {
|
||
#if DPCT_COMPATIBILITY_TEMP >= 350
|
||
/*
|
||
DPCT1098:106: The '*' expression is used instead of the __ldg
|
||
call. These two expressions do not provide the exact same
|
||
functionality. Check the generated code for potential precision
|
||
and/or performance issues.
|
||
*/
|
||
Ti cur = *(i_ptr + i * iw + j);
|
||
#else
|
||
Ti cur = i_ptr[i * iw + j];
|
||
#endif
|
||
switch (op) {
|
||
case GGML_OP_POOL_AVG: res += (cur / (kh * kw)); break;
|
||
case GGML_OP_POOL_MAX: res = sycl::max(res, (To)cur); break;
|
||
}
|
||
}
|
||
}
|
||
o_ptr[cur_oh * ow + cur_ow] = res;
|
||
}
|
||
|
||
template <int qk, int qr, dequantize_kernel_t dq>
|
||
static void get_rows_sycl(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
||
ggml_tensor *dst, const void *src0_dd,
|
||
const int32_t *src1_dd, float *dst_dd,
|
||
queue_ptr stream) {
|
||
|
||
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
||
const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
|
||
const int block_num_x = (ne00 + 2*SYCL_GET_ROWS_BLOCK_SIZE - 1) / (2*SYCL_GET_ROWS_BLOCK_SIZE);
|
||
const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
|
||
|
||
// strides in elements
|
||
//const size_t s0 = nb0 / ggml_element_size(dst);
|
||
const size_t s1 = nb1 / ggml_element_size(dst);
|
||
const size_t s2 = nb2 / ggml_element_size(dst);
|
||
const size_t s3 = nb3 / ggml_element_size(dst);
|
||
|
||
const size_t s10 = nb10 / ggml_element_size(src1);
|
||
const size_t s11 = nb11 / ggml_element_size(src1);
|
||
const size_t s12 = nb12 / ggml_element_size(src1);
|
||
//const size_t s13 = nb13 / ggml_element_size(src1);
|
||
|
||
GGML_ASSERT(ne00 % 2 == 0);
|
||
|
||
stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
k_get_rows<qk, qr, dq>(
|
||
src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
|
||
s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
|
||
});
|
||
|
||
(void) dst;
|
||
}
|
||
|
||
template <typename src0_t>
|
||
static void get_rows_sycl_float(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1, ggml_tensor *dst,
|
||
const src0_t *src0_dd, const int32_t *src1_dd,
|
||
float *dst_dd, queue_ptr stream) {
|
||
|
||
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
||
const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
|
||
const int block_num_x = (ne00 + SYCL_GET_ROWS_BLOCK_SIZE - 1) / SYCL_GET_ROWS_BLOCK_SIZE;
|
||
const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
|
||
|
||
// strides in elements
|
||
//const size_t s0 = nb0 / ggml_element_size(dst);
|
||
const size_t s1 = nb1 / ggml_element_size(dst);
|
||
const size_t s2 = nb2 / ggml_element_size(dst);
|
||
const size_t s3 = nb3 / ggml_element_size(dst);
|
||
|
||
const size_t s10 = nb10 / ggml_element_size(src1);
|
||
const size_t s11 = nb11 / ggml_element_size(src1);
|
||
const size_t s12 = nb12 / ggml_element_size(src1);
|
||
//const size_t s13 = nb13 / ggml_element_size(src1);
|
||
|
||
{
|
||
dpct::has_capability_or_fail(stream->get_device(),
|
||
{sycl::aspect::fp16});
|
||
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
k_get_rows_float(src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
|
||
s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
|
||
});
|
||
}
|
||
|
||
(void) dst;
|
||
}
|
||
|
||
template<float (*bin_op)(const float, const float)>
|
||
struct bin_bcast_sycl {
|
||
template <typename src0_t, typename src1_t, typename dst_t>
|
||
void operator()(ggml_backend_sycl_context & ctx,
|
||
const struct ggml_tensor *src0,
|
||
const struct ggml_tensor *src1, struct ggml_tensor *dst,
|
||
const src0_t *src0_dd, const src1_t *src1_dd, dst_t *dst_dd,
|
||
queue_ptr stream) {
|
||
|
||
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
||
int nr0 = ne10/ne0;
|
||
int nr1 = ne11/ne1;
|
||
int nr2 = ne12/ne2;
|
||
int nr3 = ne13/ne3;
|
||
|
||
int nr[4] = { nr0, nr1, nr2, nr3 };
|
||
|
||
// collapse dimensions until first broadcast dimension
|
||
int64_t cne0[] = {ne0, ne1, ne2, ne3};
|
||
int64_t cne1[] = {ne10, ne11, ne12, ne13};
|
||
size_t cnb0[] = {nb0, nb1, nb2, nb3};
|
||
size_t cnb1[] = {nb10, nb11, nb12, nb13};
|
||
auto collapse = [](int64_t cne[]) {
|
||
cne[0] *= cne[1];
|
||
cne[1] = cne[2];
|
||
cne[2] = cne[3];
|
||
cne[3] = 1;
|
||
};
|
||
|
||
auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
|
||
cnb[1] *= cne[1];
|
||
cnb[2] *= cne[2];
|
||
cnb[3] *= cne[3];
|
||
};
|
||
|
||
for (int i = 0; i < 4; i++) {
|
||
if (nr[i] != 1) {
|
||
break;
|
||
}
|
||
if (i > 0) {
|
||
collapse_nb(cnb0, cne0);
|
||
collapse_nb(cnb1, cne1);
|
||
collapse(cne0);
|
||
collapse(cne1);
|
||
}
|
||
}
|
||
{
|
||
int64_t ne0 = cne0[0];
|
||
int64_t ne1 = cne0[1];
|
||
int64_t ne2 = cne0[2];
|
||
int64_t ne3 = cne0[3];
|
||
|
||
int64_t ne10 = cne1[0];
|
||
int64_t ne11 = cne1[1];
|
||
int64_t ne12 = cne1[2];
|
||
int64_t ne13 = cne1[3];
|
||
|
||
size_t nb0 = cnb0[0];
|
||
size_t nb1 = cnb0[1];
|
||
size_t nb2 = cnb0[2];
|
||
size_t nb3 = cnb0[3];
|
||
|
||
size_t nb10 = cnb1[0];
|
||
size_t nb11 = cnb1[1];
|
||
size_t nb12 = cnb1[2];
|
||
size_t nb13 = cnb1[3];
|
||
|
||
size_t s0 = nb0 / sizeof(dst_t);
|
||
size_t s1 = nb1 / sizeof(dst_t);
|
||
size_t s2 = nb2 / sizeof(dst_t);
|
||
size_t s3 = nb3 / sizeof(dst_t);
|
||
|
||
size_t s10 = nb10 / sizeof(src1_t);
|
||
size_t s11 = nb11 / sizeof(src1_t);
|
||
size_t s12 = nb12 / sizeof(src1_t);
|
||
size_t s13 = nb13 / sizeof(src1_t);
|
||
|
||
GGML_ASSERT(s0 == 1);
|
||
GGML_ASSERT(s10 == 1);
|
||
|
||
const int block_size = 128;
|
||
|
||
int64_t hne0 = std::max(ne0/2LL, 1LL);
|
||
|
||
sycl::range<3> block_dims(1, 1, 1);
|
||
block_dims[2] = std::min<unsigned int>(hne0, block_size);
|
||
block_dims[1] = std::min<unsigned int>(
|
||
ne1, block_size / (unsigned int)block_dims[2]);
|
||
block_dims[0] = std::min(
|
||
std::min<unsigned int>(
|
||
ne2 * ne3, block_size / (unsigned int)block_dims[2] /
|
||
(unsigned int)block_dims[1]),
|
||
64U);
|
||
|
||
sycl::range<3> block_nums(
|
||
(ne2 * ne3 + block_dims[0] - 1) / block_dims[0],
|
||
(ne1 + block_dims[1] - 1) / block_dims[1],
|
||
(hne0 + block_dims[2] - 1) / block_dims[2]);
|
||
|
||
if (block_nums[0] > 65535) {
|
||
// this is the maximum number of blocks in z direction, fallback to 1D grid kernel
|
||
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
|
||
{
|
||
dpct::has_capability_or_fail(stream->get_device(),
|
||
{sycl::aspect::fp16});
|
||
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) *
|
||
sycl::range<3>(1, 1, block_size),
|
||
sycl::range<3>(1, 1, block_size)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
k_bin_bcast_unravel<bin_op>(
|
||
src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
|
||
ne10, ne11, ne12, ne13, s1, s2, s3, s11, s12,
|
||
s13, item_ct1);
|
||
});
|
||
}
|
||
} else {
|
||
/*
|
||
DPCT1049:16: The work-group size passed to the SYCL kernel may
|
||
exceed the limit. To get the device limit, query
|
||
info::device::max_work_group_size. Adjust the work-group size if
|
||
needed.
|
||
*/
|
||
dpct::has_capability_or_fail(stream->get_device(),
|
||
{sycl::aspect::fp16});
|
||
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
|
||
ne2, ne3, ne10, ne11, ne12, ne13,
|
||
s1, s2, s3, s11, s12, s13,
|
||
item_ct1);
|
||
});
|
||
}
|
||
}
|
||
}
|
||
};
|
||
|
||
static void acc_f32_sycl(const float *x, const float *y, float *dst,
|
||
const int n_elements, const int ne10, const int ne11,
|
||
const int ne12, const int nb1, const int nb2,
|
||
const int offset, queue_ptr stream) {
|
||
int num_blocks = (n_elements + SYCL_ACC_BLOCK_SIZE - 1) / SYCL_ACC_BLOCK_SIZE;
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
||
sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
acc_f32(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset,
|
||
item_ct1);
|
||
});
|
||
}
|
||
|
||
static void gelu_f32_sycl(const float *x, float *dst, const int k,
|
||
queue_ptr stream) {
|
||
const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
||
sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
gelu_f32(x, dst, k, item_ct1);
|
||
});
|
||
}
|
||
|
||
static void silu_f32_sycl(const float *x, float *dst, const int k,
|
||
queue_ptr stream) {
|
||
const int num_blocks = (k + SYCL_SILU_BLOCK_SIZE - 1) / SYCL_SILU_BLOCK_SIZE;
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
||
sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
silu_f32(x, dst, k, item_ct1);
|
||
});
|
||
}
|
||
|
||
static void gelu_quick_f32_sycl(const float *x, float *dst, const int k,
|
||
queue_ptr stream) {
|
||
const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
||
sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
gelu_quick_f32(x, dst, k, item_ct1);
|
||
});
|
||
}
|
||
|
||
static void tanh_f32_sycl(const float *x, float *dst, const int k,
|
||
queue_ptr stream) {
|
||
const int num_blocks = (k + SYCL_TANH_BLOCK_SIZE - 1) / SYCL_TANH_BLOCK_SIZE;
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
||
sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
tanh_f32(x, dst, k, item_ct1);
|
||
});
|
||
}
|
||
|
||
static void relu_f32_sycl(const float *x, float *dst, const int k,
|
||
queue_ptr stream) {
|
||
const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
||
sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
relu_f32(x, dst, k, item_ct1);
|
||
});
|
||
}
|
||
|
||
static void hardsigmoid_f32_sycl(const float *x, float *dst, const int k,
|
||
queue_ptr stream) {
|
||
const int num_blocks = (k + SYCL_HARDSIGMOID_BLOCK_SIZE - 1) / SYCL_HARDSIGMOID_BLOCK_SIZE;
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
||
sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
hardsigmoid_f32(x, dst, k, item_ct1);
|
||
});
|
||
}
|
||
|
||
static void hardswish_f32_sycl(const float *x, float *dst, const int k,
|
||
queue_ptr stream) {
|
||
const int num_blocks = (k + SYCL_HARDSWISH_BLOCK_SIZE - 1) / SYCL_HARDSWISH_BLOCK_SIZE;
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
||
sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
hardswish_f32(x, dst, k, item_ct1);
|
||
});
|
||
}
|
||
|
||
static void leaky_relu_f32_sycl(const float *x, float *dst, const int k,
|
||
const float negative_slope,
|
||
queue_ptr stream) {
|
||
const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
||
sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
leaky_relu_f32(x, dst, k, negative_slope, item_ct1);
|
||
});
|
||
}
|
||
|
||
static void sqr_f32_sycl(const float *x, float *dst, const int k,
|
||
queue_ptr stream) {
|
||
const int num_blocks = (k + SYCL_SQR_BLOCK_SIZE - 1) / SYCL_SQR_BLOCK_SIZE;
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
||
sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
sqr_f32(x, dst, k, item_ct1);
|
||
});
|
||
}
|
||
|
||
static void norm_f32_sycl(const float *x, float *dst, const int ncols,
|
||
const int nrows, const float eps,
|
||
queue_ptr stream) {
|
||
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
||
if (ncols < 1024) {
|
||
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
||
stream->submit([&](sycl::handler &cgh) {
|
||
sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
|
||
sycl::range<1>(32), cgh);
|
||
|
||
cgh.parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
|
||
block_dims),
|
||
[=](sycl::nd_item<3> item_ct1)
|
||
[[intel::reqd_sub_group_size(32)]] {
|
||
norm_f32(x, dst, ncols, eps, item_ct1,
|
||
s_sum_acc_ct1.get_pointer(), WARP_SIZE);
|
||
});
|
||
});
|
||
} else {
|
||
const int work_group_size = get_work_group_size(stream->get_device());
|
||
const sycl::range<3> block_dims(1, 1, work_group_size);
|
||
/*
|
||
DPCT1049:17: The work-group size passed to the SYCL kernel may exceed
|
||
the limit. To get the device limit, query
|
||
info::device::max_work_group_size. Adjust the work-group size if needed.
|
||
*/
|
||
stream->submit([&](sycl::handler &cgh) {
|
||
sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
|
||
sycl::range<1>(32), cgh);
|
||
|
||
cgh.parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
|
||
block_dims),
|
||
[=](sycl::nd_item<3> item_ct1)
|
||
[[intel::reqd_sub_group_size(32)]] {
|
||
norm_f32(x, dst, ncols, eps, item_ct1,
|
||
s_sum_acc_ct1.get_pointer(), work_group_size);
|
||
});
|
||
});
|
||
}
|
||
}
|
||
|
||
static void group_norm_f32_sycl(const float *x, float *dst,
|
||
const int num_groups, const int group_size,
|
||
const int ne_elements, queue_ptr stream) {
|
||
static const float eps = 1e-6f;
|
||
if (group_size < 1024) {
|
||
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
||
stream->submit([&](sycl::handler &cgh) {
|
||
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
|
||
cgh);
|
||
|
||
const float eps_ct4 = eps;
|
||
|
||
cgh.parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
|
||
block_dims),
|
||
[=](sycl::nd_item<3> item_ct1)
|
||
[[intel::reqd_sub_group_size(32)]] {
|
||
group_norm_f32(
|
||
x, dst, group_size, ne_elements, eps_ct4, item_ct1,
|
||
s_sum_acc_ct1.get_pointer(), WARP_SIZE);
|
||
});
|
||
});
|
||
} else {
|
||
const int work_group_size = get_work_group_size(stream->get_device());
|
||
const sycl::range<3> block_dims(1, 1, work_group_size);
|
||
/*
|
||
DPCT1049:18: The work-group size passed to the SYCL kernel may exceed
|
||
the limit. To get the device limit, query
|
||
info::device::max_work_group_size. Adjust the work-group size if needed.
|
||
*/
|
||
|
||
stream->submit([&](sycl::handler &cgh) {
|
||
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
|
||
cgh);
|
||
|
||
const float eps_ct4 = eps;
|
||
|
||
cgh.parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
|
||
block_dims),
|
||
[=](sycl::nd_item<3> item_ct1)
|
||
[[intel::reqd_sub_group_size(32)]] {
|
||
group_norm_f32(x, dst, group_size, ne_elements,
|
||
eps_ct4, item_ct1,
|
||
s_sum_acc_ct1.get_pointer(), work_group_size);
|
||
});
|
||
});
|
||
}
|
||
}
|
||
|
||
static void concat_f32_sycl(const float *x, const float *y, float *dst,
|
||
const int ne0, int ne1, int ne2, int ne02,
|
||
queue_ptr stream) {
|
||
int num_blocks = (ne0 + SYCL_CONCAT_BLOCK_SIZE - 1) / SYCL_CONCAT_BLOCK_SIZE;
|
||
sycl::range<3> gridDim(ne2, ne1, num_blocks);
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(gridDim *
|
||
sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
concat_f32(x, y, dst, ne0, ne02, item_ct1);
|
||
});
|
||
}
|
||
|
||
static void upscale_f32_sycl(const float *x, float *dst, const int nb00, const int nb01,
|
||
const int nb02, const int nb03, const int ne10, const int ne11,
|
||
const int ne12, const int ne13, const float sf0, const float sf1,
|
||
const float sf2, const float sf3, queue_ptr stream) {
|
||
int dst_size = ne10 * ne11 * ne12 * ne13;
|
||
int num_blocks = (dst_size + SYCL_UPSCALE_BLOCK_SIZE - 1) / SYCL_UPSCALE_BLOCK_SIZE;
|
||
sycl::range<1> gridDim(num_blocks * SYCL_UPSCALE_BLOCK_SIZE);
|
||
stream->parallel_for(
|
||
sycl::nd_range<1>(gridDim, sycl::range<1>(SYCL_UPSCALE_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<1> item_ct1) {
|
||
upscale_f32(x, dst, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3, item_ct1);
|
||
});
|
||
}
|
||
|
||
static void pad_f32_sycl(const float *x, float *dst, const int ne00,
|
||
const int ne01, const int ne02, const int ne0,
|
||
const int ne1, const int ne2, queue_ptr stream) {
|
||
int num_blocks = (ne0 + SYCL_PAD_BLOCK_SIZE - 1) / SYCL_PAD_BLOCK_SIZE;
|
||
sycl::range<3> gridDim(ne2, ne1, num_blocks);
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(gridDim * sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
pad_f32(x, dst, ne0, ne00, ne01, ne02, item_ct1);
|
||
});
|
||
}
|
||
|
||
static void rms_norm_f32_sycl(const float *x, float *dst, const int ncols,
|
||
const int nrows, const float eps,
|
||
queue_ptr stream) {
|
||
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
||
// printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
|
||
if (ncols < 1024) {
|
||
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
||
stream->submit([&](sycl::handler &cgh) {
|
||
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
|
||
cgh);
|
||
|
||
cgh.parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
|
||
block_dims),
|
||
[=](sycl::nd_item<3> item_ct1)
|
||
[[intel::reqd_sub_group_size(32)]] {
|
||
rms_norm_f32(x, dst, ncols, eps, item_ct1,
|
||
s_sum_acc_ct1.get_pointer(), WARP_SIZE);
|
||
});
|
||
});
|
||
} else {
|
||
const int work_group_size = get_work_group_size(stream->get_device());
|
||
const sycl::range<3> block_dims(1, 1, work_group_size);
|
||
/*
|
||
DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
|
||
the limit. To get the device limit, query
|
||
info::device::max_work_group_size. Adjust the work-group size if needed.
|
||
*/
|
||
stream->submit([&](sycl::handler &cgh) {
|
||
sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
|
||
cgh);
|
||
|
||
cgh.parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
|
||
block_dims),
|
||
[=](sycl::nd_item<3> item_ct1)
|
||
[[intel::reqd_sub_group_size(32)]] {
|
||
rms_norm_f32(x, dst, ncols, eps, item_ct1,
|
||
s_sum_acc_ct1.get_pointer(), work_group_size);
|
||
});
|
||
});
|
||
}
|
||
}
|
||
|
||
static void quantize_row_q8_1_sycl(const float *x, void *vy, const int kx,
|
||
const int ky, const int kx_padded,
|
||
queue_ptr stream) {
|
||
const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE;
|
||
const sycl::range<3> num_blocks(1, ky, block_num_x);
|
||
const sycl::range<3> block_size(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE);
|
||
{
|
||
dpct::has_capability_or_fail(stream->get_device(),
|
||
{sycl::aspect::fp16});
|
||
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(num_blocks * block_size, block_size),
|
||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
||
quantize_q8_1(x, vy, kx, kx_padded, item_ct1);
|
||
});
|
||
}
|
||
}
|
||
|
||
static void ggml_mul_mat_p021_f16_f32_sycl(const void *vx, const float *y,
|
||
float *dst, const int ncols_x,
|
||
const int nrows_x,
|
||
const int nchannels_x,
|
||
const int nchannels_y,
|
||
queue_ptr stream) {
|
||
|
||
const sycl::range<3> block_nums(nchannels_y, nrows_x, 1);
|
||
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
||
{
|
||
dpct::has_capability_or_fail(stream->get_device(),
|
||
{sycl::aspect::fp16});
|
||
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
||
mul_mat_p021_f16_f32(vx, y, dst, ncols_x, nrows_x, nchannels_x,
|
||
nchannels_y, item_ct1);
|
||
});
|
||
}
|
||
}
|
||
|
||
static void ggml_mul_mat_vec_nc_f16_f32_sycl(
|
||
const void *vx, const float *y, float *dst, const int ncols_x,
|
||
const int nrows_x, const int row_stride_x, const int nchannels_x,
|
||
const int nchannels_y, const int channel_stride_x, queue_ptr stream) {
|
||
|
||
const sycl::range<3> block_nums(nchannels_y, nrows_x, 1);
|
||
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
||
{
|
||
dpct::has_capability_or_fail(stream->get_device(),
|
||
{sycl::aspect::fp16});
|
||
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
||
mul_mat_vec_nc_f16_f32(vx, y, dst, ncols_x, nrows_x,
|
||
row_stride_x, channel_stride_x,
|
||
nchannels_y / nchannels_x, item_ct1);
|
||
});
|
||
}
|
||
}
|
||
|
||
static void
|
||
ggml_cpy_f16_f32_sycl(const char *cx, char *cdst, const int ne, const int ne00,
|
||
const int ne01, const int ne02, const int nb00,
|
||
const int nb01, const int nb02, const int nb03,
|
||
const int ne10, const int ne11, const int ne12,
|
||
const int nb10, const int nb11, const int nb12,
|
||
const int nb13, queue_ptr stream) {
|
||
|
||
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
|
||
{
|
||
dpct::has_capability_or_fail(stream->get_device(),
|
||
{sycl::aspect::fp16});
|
||
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
cpy_f32_f16<cpy_1_f16_f32>(cx, cdst, ne, ne00, ne01, ne02, nb00,
|
||
nb01, nb02, nb03, ne10, ne11, ne12,
|
||
nb10, nb11, nb12, nb13, item_ct1);
|
||
});
|
||
}
|
||
}
|
||
|
||
static void ggml_cpy_f32_f32_sycl(const char *cx, char *cdst, const int ne,
|
||
const int ne00, const int ne01,
|
||
const int ne02, const int nb00,
|
||
const int nb01, const int nb02,
|
||
const int nb03, const int ne10,
|
||
const int ne11, const int ne12,
|
||
const int nb10, const int nb11,
|
||
const int nb12, const int nb13,
|
||
queue_ptr stream) {
|
||
|
||
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
|
||
{
|
||
dpct::has_capability_or_fail(stream->get_device(),
|
||
{sycl::aspect::fp16});
|
||
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
cpy_f32_f16<cpy_1_f32_f32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
||
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
||
item_ct1);
|
||
});
|
||
}
|
||
}
|
||
|
||
static void ggml_cpy_f32_f16_sycl(const char *cx, char *cdst, const int ne,
|
||
const int ne00, const int ne01,
|
||
const int ne02, const int nb00,
|
||
const int nb01, const int nb02,
|
||
const int nb03, const int ne10,
|
||
const int ne11, const int ne12,
|
||
const int nb10, const int nb11,
|
||
const int nb12, const int nb13,
|
||
queue_ptr stream) {
|
||
|
||
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
|
||
{
|
||
dpct::has_capability_or_fail(stream->get_device(),
|
||
{sycl::aspect::fp16});
|
||
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
cpy_f32_f16<cpy_1_f32_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
||
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
||
item_ct1);
|
||
});
|
||
}
|
||
}
|
||
|
||
static void ggml_cpy_f32_q8_0_sycl(const char *cx, char *cdst, const int ne,
|
||
const int ne00, const int ne01,
|
||
const int ne02, const int nb00,
|
||
const int nb01, const int nb02,
|
||
const int nb03, const int ne10,
|
||
const int ne11, const int ne12,
|
||
const int nb10, const int nb11,
|
||
const int nb12, const int nb13,
|
||
queue_ptr stream) {
|
||
|
||
GGML_ASSERT(ne % QK8_0 == 0);
|
||
const int num_blocks = ne / QK8_0;
|
||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
|
||
sycl::range<3>(1, 1, 1)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
cpy_f32_q<cpy_blck_f32_q8_0, QK8_0>(
|
||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
||
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
||
item_ct1);
|
||
});
|
||
}
|
||
|
||
static void ggml_cpy_f32_q4_0_sycl(const char *cx, char *cdst, const int ne,
|
||
const int ne00, const int ne01,
|
||
const int ne02, const int nb00,
|
||
const int nb01, const int nb02,
|
||
const int nb03, const int ne10,
|
||
const int ne11, const int ne12,
|
||
const int nb10, const int nb11,
|
||
const int nb12, const int nb13,
|
||
queue_ptr stream) {
|
||
|
||
GGML_ASSERT(ne % QK4_0 == 0);
|
||
const int num_blocks = ne / QK4_0;
|
||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
|
||
sycl::range<3>(1, 1, 1)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
cpy_f32_q<cpy_blck_f32_q4_0, QK4_0>(
|
||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
||
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
||
item_ct1);
|
||
});
|
||
}
|
||
|
||
static void ggml_cpy_f32_q4_1_sycl(const char *cx, char *cdst, const int ne,
|
||
const int ne00, const int ne01,
|
||
const int ne02, const int nb00,
|
||
const int nb01, const int nb02,
|
||
const int nb03, const int ne10,
|
||
const int ne11, const int ne12,
|
||
const int nb10, const int nb11,
|
||
const int nb12, const int nb13,
|
||
queue_ptr stream) {
|
||
|
||
GGML_ASSERT(ne % QK4_1 == 0);
|
||
const int num_blocks = ne / QK4_1;
|
||
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
|
||
sycl::range<3>(1, 1, 1)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
cpy_f32_q<cpy_blck_f32_q4_1, QK4_1>(
|
||
cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
||
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
||
item_ct1);
|
||
});
|
||
}
|
||
|
||
static void ggml_cpy_f16_f16_sycl(const char *cx, char *cdst, const int ne,
|
||
const int ne00, const int ne01,
|
||
const int ne02, const int nb00,
|
||
const int nb01, const int nb02,
|
||
const int nb03, const int ne10,
|
||
const int ne11, const int ne12,
|
||
const int nb10, const int nb11,
|
||
const int nb12, const int nb13,
|
||
queue_ptr stream) {
|
||
|
||
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
|
||
{
|
||
dpct::has_capability_or_fail(stream->get_device(),
|
||
{sycl::aspect::fp16});
|
||
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
cpy_f32_f16<cpy_1_f16_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
||
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
||
item_ct1);
|
||
});
|
||
}
|
||
}
|
||
|
||
static void ggml_cpy_i16_i16_sycl(const char *cx, char *cdst, const int ne,
|
||
const int ne00, const int ne01,
|
||
const int ne02, const int nb00,
|
||
const int nb01, const int nb02,
|
||
const int nb03, const int ne10,
|
||
const int ne11, const int ne12,
|
||
const int nb10, const int nb11,
|
||
const int nb12, const int nb13,
|
||
queue_ptr stream) {
|
||
|
||
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
|
||
{
|
||
// dpct::has_capability_or_fail(stream->get_device(),
|
||
// {sycl::aspect::fp16});
|
||
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
cpy_f32_f16<cpy_1_i16_i16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
||
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
||
item_ct1);
|
||
});
|
||
}
|
||
}
|
||
|
||
static void ggml_cpy_i32_i32_sycl(const char *cx, char *cdst, const int ne,
|
||
const int ne00, const int ne01,
|
||
const int ne02, const int nb00,
|
||
const int nb01, const int nb02,
|
||
const int nb03, const int ne10,
|
||
const int ne11, const int ne12,
|
||
const int nb10, const int nb11,
|
||
const int nb12, const int nb13,
|
||
queue_ptr stream) {
|
||
|
||
const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
|
||
{
|
||
// dpct::has_capability_or_fail(stream->get_device(),
|
||
// {sycl::aspect::fp16});
|
||
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
cpy_f32_f16<cpy_1_i32_i32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
|
||
nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
|
||
item_ct1);
|
||
});
|
||
}
|
||
}
|
||
|
||
static void scale_f32_sycl(const float *x, float *dst, const float scale,
|
||
const int k, queue_ptr stream) {
|
||
const int num_blocks = (k + SYCL_SCALE_BLOCK_SIZE - 1) / SYCL_SCALE_BLOCK_SIZE;
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
||
sycl::range<3>(1, 1, SYCL_SCALE_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_SCALE_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
scale_f32(x, dst, scale, k, item_ct1);
|
||
});
|
||
}
|
||
|
||
static void clamp_f32_sycl(const float *x, float *dst, const float min,
|
||
const float max, const int k,
|
||
queue_ptr stream) {
|
||
const int num_blocks = (k + SYCL_CLAMP_BLOCK_SIZE - 1) / SYCL_CLAMP_BLOCK_SIZE;
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
|
||
sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
clamp_f32(x, dst, min, max, k, item_ct1);
|
||
});
|
||
}
|
||
|
||
template <typename T>
|
||
static void rope_sycl(const T *x, T *dst, int ncols, int nrows,
|
||
const int32_t *pos, float freq_scale, int p_delta_rows,
|
||
float freq_base, float ext_factor, float attn_factor,
|
||
rope_corr_dims corr_dims, queue_ptr stream) {
|
||
GGML_ASSERT(ncols % 2 == 0);
|
||
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
|
||
const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
|
||
const sycl::range<3> block_nums(1, num_blocks_x, nrows);
|
||
if (pos == nullptr) {
|
||
/*
|
||
DPCT1049:40: The work-group size passed to the SYCL kernel may exceed
|
||
the limit. To get the device limit, query
|
||
info::device::max_work_group_size. Adjust the work-group size if needed.
|
||
*/
|
||
dpct::has_capability_or_fail(stream->get_device(),
|
||
{sycl::aspect::fp16});
|
||
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
rope<T, false>(x, dst, ncols, pos, freq_scale, p_delta_rows,
|
||
freq_base, ext_factor, attn_factor, corr_dims,
|
||
item_ct1);
|
||
});
|
||
} else {
|
||
/*
|
||
DPCT1049:41: The work-group size passed to the SYCL kernel may exceed
|
||
the limit. To get the device limit, query
|
||
info::device::max_work_group_size. Adjust the work-group size if needed.
|
||
*/
|
||
dpct::has_capability_or_fail(stream->get_device(),
|
||
{sycl::aspect::fp16});
|
||
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
rope<T, true>(x, dst, ncols, pos, freq_scale, p_delta_rows,
|
||
freq_base, ext_factor, attn_factor, corr_dims,
|
||
item_ct1);
|
||
});
|
||
}
|
||
}
|
||
|
||
template <typename T>
|
||
static void rope_neox_sycl(const T *x, T *dst, int ncols, int n_dims, int nrows,
|
||
const int32_t *pos, float freq_scale,
|
||
int p_delta_rows, float freq_base, float ext_factor,
|
||
float attn_factor, rope_corr_dims corr_dims,
|
||
const float * freq_factors, queue_ptr stream) {
|
||
GGML_ASSERT(ncols % 2 == 0);
|
||
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
|
||
const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
|
||
const sycl::range<3> block_nums(1, num_blocks_x, nrows);
|
||
|
||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||
const float inv_ndims = -1.0f / n_dims;
|
||
|
||
if (pos == nullptr) {
|
||
dpct::has_capability_or_fail(stream->get_device(),
|
||
{sycl::aspect::fp16});
|
||
if (freq_factors == nullptr) {
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
rope_neox<T, false, false>(x, dst, ncols, n_dims, pos, freq_scale,
|
||
p_delta_rows, ext_factor, attn_factor,
|
||
corr_dims, theta_scale, inv_ndims, freq_factors,
|
||
item_ct1);
|
||
});
|
||
} else {
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
rope_neox<T, false, true>(x, dst, ncols, n_dims, pos, freq_scale,
|
||
p_delta_rows, ext_factor, attn_factor,
|
||
corr_dims, theta_scale, inv_ndims, freq_factors,
|
||
item_ct1);
|
||
});
|
||
}
|
||
} else {
|
||
dpct::has_capability_or_fail(stream->get_device(),
|
||
{sycl::aspect::fp16});
|
||
|
||
if (freq_factors == nullptr) {
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
rope_neox<T, true, false>(x, dst, ncols, n_dims, pos, freq_scale,
|
||
p_delta_rows, ext_factor, attn_factor,
|
||
corr_dims, theta_scale, inv_ndims, freq_factors, item_ct1);
|
||
});
|
||
} else {
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
rope_neox<T, true, true>(x, dst, ncols, n_dims, pos, freq_scale,
|
||
p_delta_rows, ext_factor, attn_factor,
|
||
corr_dims, theta_scale, inv_ndims, freq_factors, item_ct1);
|
||
});
|
||
}
|
||
}
|
||
}
|
||
|
||
static void sum_rows_f32_sycl(const float *x, float *dst, const int ncols,
|
||
const int nrows, queue_ptr stream) {
|
||
const sycl::range<3> block_dims(1, 1, WARP_SIZE);
|
||
const sycl::range<3> block_nums(1, nrows, 1);
|
||
stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||
[=](sycl::nd_item<3> item_ct1)
|
||
[[intel::reqd_sub_group_size(32)]] {
|
||
k_sum_rows_f32(x, dst, ncols, item_ct1);
|
||
});
|
||
}
|
||
|
||
static int next_power_of_2(int x) {
|
||
int n = 1;
|
||
while (n < x) {
|
||
n *= 2;
|
||
}
|
||
return n;
|
||
}
|
||
|
||
static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
|
||
const int nrows, ggml_sort_order order,
|
||
queue_ptr stream) {
|
||
// bitonic sort requires ncols to be power of 2
|
||
const int ncols_pad = next_power_of_2(ncols);
|
||
|
||
const sycl::range<3> block_dims(1, 1, ncols_pad);
|
||
const sycl::range<3> block_nums(1, nrows, 1);
|
||
const size_t shared_mem = ncols_pad * sizeof(int);
|
||
|
||
if (order == GGML_SORT_ORDER_ASC) {
|
||
stream->submit([&](sycl::handler &cgh) {
|
||
sycl::local_accessor<uint8_t, 1> dpct_local_acc_ct1(
|
||
sycl::range<1>(shared_mem), cgh);
|
||
|
||
cgh.parallel_for(
|
||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
k_argsort_f32_i32<GGML_SORT_ORDER_ASC>(
|
||
x, dst, ncols, ncols_pad, item_ct1,
|
||
dpct_local_acc_ct1.get_multi_ptr<sycl::access::decorated::no>()
|
||
.get());
|
||
});
|
||
});
|
||
} else if (order == GGML_SORT_ORDER_DESC) {
|
||
stream->submit([&](sycl::handler &cgh) {
|
||
sycl::local_accessor<uint8_t, 1> dpct_local_acc_ct1(
|
||
sycl::range<1>(shared_mem), cgh);
|
||
|
||
cgh.parallel_for(
|
||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
k_argsort_f32_i32<GGML_SORT_ORDER_DESC>(
|
||
x, dst, ncols, ncols_pad, item_ct1,
|
||
dpct_local_acc_ct1.get_multi_ptr<sycl::access::decorated::no>()
|
||
.get());
|
||
});
|
||
});
|
||
} else {
|
||
GGML_ASSERT(false);
|
||
}
|
||
}
|
||
|
||
static void diag_mask_inf_f32_sycl(const float *x, float *dst,
|
||
const int ncols_x, const int nrows_x,
|
||
const int rows_per_channel, const int n_past,
|
||
queue_ptr stream) {
|
||
const sycl::range<3> block_dims(1, SYCL_DIAG_MASK_INF_BLOCK_SIZE, 1);
|
||
const int block_num_x = (ncols_x + SYCL_DIAG_MASK_INF_BLOCK_SIZE - 1) / SYCL_DIAG_MASK_INF_BLOCK_SIZE;
|
||
const sycl::range<3> block_nums(1, block_num_x, nrows_x);
|
||
stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
diag_mask_inf_f32(x, dst, ncols_x,
|
||
rows_per_channel, n_past,
|
||
item_ct1);
|
||
});
|
||
}
|
||
|
||
template <bool vals_smem, int ncols_template, int block_size_template>
|
||
static void soft_max_f32_submitter(const float * x, const float * mask, float * dst, const int ncols_par,
|
||
const int nrows_y, const float scale, const float max_bias, const float m0,
|
||
const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims,
|
||
const size_t n_local_scratch, queue_ptr stream) {
|
||
stream->submit([&](sycl::handler &cgh) {
|
||
sycl::local_accessor<float, 1> local_buf_acc(n_local_scratch, cgh);
|
||
|
||
cgh.parallel_for(
|
||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||
[=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
|
||
soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, dst, ncols_par,
|
||
nrows_y, scale, max_bias, m0,
|
||
m1, n_head_log2, item_ct1,
|
||
local_buf_acc.get_pointer());
|
||
});
|
||
});
|
||
}
|
||
|
||
static void soft_max_f32_sycl(const float * x, const float * mask,
|
||
float * dst, const int ncols_x, const int nrows_x,
|
||
const int nrows_y, const float scale, const float max_bias,
|
||
queue_ptr stream) {
|
||
int nth = WARP_SIZE;
|
||
int max_block_size = get_work_group_size(stream->get_device());
|
||
while (nth < ncols_x && nth < max_block_size) nth *= 2;
|
||
if (nth>max_block_size) nth = max_block_size;
|
||
|
||
const sycl::range<3> block_dims(1, 1, nth);
|
||
const sycl::range<3> block_nums(1, 1, nrows_x);
|
||
const size_t n_local_scratch = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE);
|
||
|
||
const uint32_t n_head_kv = nrows_x/nrows_y;
|
||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
|
||
|
||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||
|
||
const size_t local_mem_size = stream->get_device().get_info<sycl::info::device::local_mem_size>();
|
||
if (n_local_scratch*sizeof(float) < local_mem_size) {
|
||
if (ncols_x > max_block_size) {
|
||
soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
max_bias, m0, m1, n_head_log2, block_nums,
|
||
block_dims, n_local_scratch, stream);
|
||
return;
|
||
}
|
||
switch (ncols_x) {
|
||
case 32:
|
||
soft_max_f32_submitter<true, 32, 32>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
max_bias, m0, m1, n_head_log2, block_nums,
|
||
block_dims, n_local_scratch, stream);
|
||
break;
|
||
case 64:
|
||
soft_max_f32_submitter<true, 64, 64>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
max_bias, m0, m1, n_head_log2, block_nums,
|
||
block_dims, n_local_scratch, stream);
|
||
break;
|
||
case 128:
|
||
soft_max_f32_submitter<true, 128, 128>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
max_bias, m0, m1, n_head_log2, block_nums,
|
||
block_dims, n_local_scratch, stream);
|
||
break;
|
||
case 256:
|
||
soft_max_f32_submitter<true, 256, 256>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
max_bias, m0, m1, n_head_log2, block_nums,
|
||
block_dims, n_local_scratch, stream);
|
||
break;
|
||
case 512:
|
||
soft_max_f32_submitter<true, 512, 512>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
max_bias, m0, m1, n_head_log2, block_nums,
|
||
block_dims, n_local_scratch, stream);
|
||
break;
|
||
case 1024:
|
||
soft_max_f32_submitter<true, 1024, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
max_bias, m0, m1, n_head_log2, block_nums,
|
||
block_dims, n_local_scratch, stream);
|
||
break;
|
||
case 2048:
|
||
soft_max_f32_submitter<true, 2048, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
max_bias, m0, m1, n_head_log2, block_nums,
|
||
block_dims, n_local_scratch, stream);
|
||
break;
|
||
case 4096:
|
||
soft_max_f32_submitter<true, 4096, 1024>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
max_bias, m0, m1, n_head_log2, block_nums,
|
||
block_dims, n_local_scratch, stream);
|
||
break;
|
||
default:
|
||
soft_max_f32_submitter<true, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
max_bias, m0, m1, n_head_log2, block_nums,
|
||
block_dims, n_local_scratch, stream);
|
||
break;
|
||
}
|
||
} else {
|
||
soft_max_f32_submitter<false, 0, 0>(x, mask, dst, ncols_x, nrows_y, scale,
|
||
max_bias, m0, m1, n_head_log2, block_nums,
|
||
block_dims, WARP_SIZE, stream);
|
||
}
|
||
}
|
||
|
||
template <typename T>
|
||
static void im2col_sycl(const float *x, T *dst, int IW, int IH,
|
||
int OW, int OH, int KW, int KH, int IC,
|
||
int offset_delta, int s0, int s1, int p0,
|
||
int p1, int d0, int d1,
|
||
queue_ptr stream) {
|
||
const int parallel_elements = OW * KW * KH;
|
||
const int num_blocks = (parallel_elements + SYCL_IM2COL_BLOCK_SIZE - 1) / SYCL_IM2COL_BLOCK_SIZE;
|
||
sycl::range<3> block_nums(IC, OH, num_blocks);
|
||
{
|
||
dpct::has_capability_or_fail(stream->get_device(),
|
||
{sycl::aspect::fp16});
|
||
|
||
stream->parallel_for(
|
||
sycl::nd_range<3>(block_nums *
|
||
sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
im2col_kernel(x, dst, offset_delta, IW, IH, OW, KW, KH,
|
||
parallel_elements, (IC * KH * KW), s0, s1, p0,
|
||
p1, d0, d1, item_ct1);
|
||
});
|
||
}
|
||
}
|
||
|
||
|
||
static bool g_sycl_loaded = false;
|
||
|
||
bool ggml_sycl_loaded(void) {
|
||
return g_sycl_loaded;
|
||
}
|
||
|
||
void print_device_detail(int id, sycl::device &device, std::string device_type) {
|
||
|
||
dpct::device_info prop;
|
||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||
dpct::get_device_info(prop, device)));
|
||
|
||
std::string version;
|
||
version += std::to_string(prop.get_major_version());
|
||
version += ".";
|
||
version += std::to_string(prop.get_minor_version());
|
||
|
||
device_type = std::regex_replace(device_type, std::regex("ext_oneapi_"), "");
|
||
std::string name = std::string(prop.get_name());
|
||
name = std::regex_replace(name, std::regex("\\(R\\)"), "");
|
||
name = std::regex_replace(name, std::regex("\\(TM\\)"), "");
|
||
|
||
auto global_mem_size = prop.get_global_mem_size()/1000000;
|
||
|
||
fprintf(stderr, "|%2d|%19s|%39s|%7s|%7d|%8d|%5d|%6luM|%21s|\n", id, device_type.c_str(),
|
||
name.c_str(), version.c_str(), prop.get_max_compute_units(),
|
||
prop.get_max_work_group_size(), prop.get_max_sub_group_size(),
|
||
global_mem_size, device.get_info<sycl::info::device::driver_version>().c_str());
|
||
}
|
||
|
||
void ggml_backend_sycl_print_sycl_devices() {
|
||
GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_print_sycl_devices\n");
|
||
int device_count = dpct::dev_mgr::instance().device_count();
|
||
std::map<std::string, size_t> DeviceNums;
|
||
fprintf(stderr, "found %d SYCL devices:\n", device_count);
|
||
fprintf(stderr, "| | | | |Max | |Max |Global | |\n");
|
||
fprintf(stderr, "| | | | |compute|Max work|sub |mem | |\n");
|
||
fprintf(stderr, "|ID| Device Type| Name|Version|units |group |group|size | Driver version|\n");
|
||
fprintf(stderr, "|--|-------------------|---------------------------------------|-------|-------|--------|-----|-------|---------------------|\n");
|
||
for (int id = 0; id < device_count; ++id) {
|
||
sycl::device device = dpct::dev_mgr::instance().get_device(id);
|
||
sycl::backend backend = device.get_backend();
|
||
std::string backend_type = get_device_backend_and_type(device);
|
||
int type_id=DeviceNums[backend_type]++;
|
||
std::stringstream device_type;
|
||
device_type << "[" << backend_type << ":" << std::to_string(type_id) << "]";
|
||
print_device_detail(id, device, device_type.str());
|
||
}
|
||
}
|
||
|
||
static inline int get_sycl_env(const char *env_name, int default_val) {
|
||
char *user_device_string = getenv(env_name);
|
||
int user_number = default_val;
|
||
|
||
unsigned n;
|
||
if (user_device_string != NULL &&
|
||
sscanf(user_device_string, " %u", &n) == 1) {
|
||
user_number = (int)n;
|
||
} else {
|
||
user_number = default_val;
|
||
}
|
||
return user_number;
|
||
}
|
||
|
||
static inline int get_work_group_size(const sycl::device& device) {
|
||
dpct::device_info prop;
|
||
dpct::get_device_info(prop, device);
|
||
return prop.get_max_work_group_size();
|
||
}
|
||
|
||
static void ggml_check_sycl() try {
|
||
static bool initialized = false;
|
||
|
||
if (!initialized) {
|
||
fprintf(stderr, "[SYCL] call ggml_check_sycl\n");
|
||
g_ggml_sycl_debug = get_sycl_env("GGML_SYCL_DEBUG", 0);
|
||
|
||
fprintf(stderr, "%s: GGML_SYCL_DEBUG: %d\n", __func__, g_ggml_sycl_debug);
|
||
|
||
#if defined(GGML_SYCL_F16)
|
||
fprintf(stderr, "%s: GGML_SYCL_F16: yes\n", __func__);
|
||
#else
|
||
fprintf(stderr, "%s: GGML_SYCL_F16: no\n", __func__);
|
||
#endif
|
||
|
||
/* NOT REMOVE, keep it for next optimize for XMX.
|
||
#if defined(SYCL_USE_XMX)
|
||
fprintf(stderr, "%s: SYCL_USE_XMX: yes\n", __func__);
|
||
#else
|
||
fprintf(stderr, "%s: SYCL_USE_XMX: no\n", __func__);
|
||
#endif
|
||
*/
|
||
|
||
if (CHECK_TRY_ERROR(g_all_sycl_device_count =
|
||
dpct::dev_mgr::instance().device_count()) != 0) {
|
||
initialized = true;
|
||
g_sycl_loaded = false;
|
||
return;
|
||
}
|
||
GGML_ASSERT(g_all_sycl_device_count <= GGML_SYCL_MAX_DEVICES);
|
||
ggml_backend_sycl_print_sycl_devices();
|
||
initialized = true;
|
||
g_sycl_loaded = true;
|
||
}
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
static ggml_sycl_device_info ggml_sycl_init() {
|
||
ggml_sycl_device_info info = {};
|
||
|
||
info.device_count = dpct::dev_mgr::instance().device_count();
|
||
if (info.device_count == 0) {
|
||
fprintf(stderr, "%s: failed to initialize " GGML_SYCL_NAME ": %s\n", __func__);
|
||
return info;
|
||
}
|
||
|
||
GGML_ASSERT(info.device_count <= GGML_SYCL_MAX_DEVICES);
|
||
|
||
int64_t total_vram = 0;
|
||
#if defined(GGML_SYCL_FORCE_MMQ)
|
||
fprintf(stderr, "%s: GGML_SYCL_FORCE_MMQ: yes\n", __func__);
|
||
#else
|
||
fprintf(stderr, "%s: GGML_SYCL_FORCE_MMQ: no\n", __func__);
|
||
#endif
|
||
#if defined(SYCL_USE_XMX)
|
||
fprintf(stderr, "%s: SYCL_USE_XMX: yes\n", __func__);
|
||
#else
|
||
fprintf(stderr, "%s: SYCL_USE_XMX: no\n", __func__);
|
||
#endif
|
||
fprintf(stderr, "%s: found %d " GGML_SYCL_NAME " devices:\n", __func__, info.device_count);
|
||
|
||
for (int i = 0; i < info.device_count; ++i) {
|
||
info.devices[i].vmm = 0;
|
||
dpct::device_info prop;
|
||
SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
|
||
prop, dpct::dev_mgr::instance().get_device(i))));
|
||
|
||
info.default_tensor_split[i] = total_vram;
|
||
total_vram += prop.get_global_mem_size();
|
||
|
||
info.devices[i].cc =
|
||
100 * prop.get_major_version() + 10 * prop.get_minor_version();
|
||
}
|
||
|
||
for (int id = 0; id < info.device_count; ++id) {
|
||
info.default_tensor_split[id] /= total_vram;
|
||
}
|
||
return info;
|
||
}
|
||
|
||
const ggml_sycl_device_info & ggml_sycl_info() {
|
||
static ggml_sycl_device_info info = ggml_sycl_init();
|
||
return info;
|
||
}
|
||
|
||
/*
|
||
device_index: device index from 0 to n (continue numbers).
|
||
It is used for device select/set in SYCL backend internal data structure.
|
||
*/
|
||
inline void check_allow_gpu_index(const int device_index) {
|
||
if (device_index >= ggml_sycl_info().device_count) {
|
||
char error_buf[256];
|
||
snprintf(
|
||
error_buf,
|
||
sizeof(error_buf),
|
||
"%s error: device_index:%d is out of range: [0-%d]",
|
||
__func__,
|
||
device_index,
|
||
ggml_sycl_info().device_count - 1);
|
||
fprintf(stderr, "%s\n", error_buf);
|
||
assert(false);
|
||
}
|
||
}
|
||
|
||
// buffer pool for sycl (legacy)
|
||
struct ggml_sycl_pool_leg : public ggml_sycl_pool {
|
||
static const int MAX_SYCL_BUFFERS = 256;
|
||
|
||
int device;
|
||
queue_ptr qptr;
|
||
struct ggml_sycl_buffer {
|
||
void * ptr = nullptr;
|
||
size_t size = 0;
|
||
};
|
||
|
||
ggml_sycl_buffer buffer_pool[MAX_SYCL_BUFFERS] = {};
|
||
size_t pool_size = 0;
|
||
|
||
explicit ggml_sycl_pool_leg(queue_ptr qptr_, int device_) :
|
||
qptr(qptr_),
|
||
device(device_) {
|
||
}
|
||
|
||
~ggml_sycl_pool_leg() {
|
||
for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
|
||
ggml_sycl_buffer & b = buffer_pool[i];
|
||
if (b.ptr != nullptr) {
|
||
SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(b.ptr, *qptr)));
|
||
pool_size -= b.size;
|
||
}
|
||
}
|
||
GGML_ASSERT(pool_size == 0);
|
||
}
|
||
|
||
void * alloc(size_t size, size_t * actual_size) override {
|
||
#ifdef DEBUG_sycl_MALLOC
|
||
int nnz = 0;
|
||
size_t max_size = 0;
|
||
#endif
|
||
size_t best_diff = 1ull << 36;
|
||
int ibest = -1;
|
||
for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
|
||
ggml_sycl_buffer& b = buffer_pool[i];
|
||
if (b.ptr != nullptr) {
|
||
#ifdef DEBUG_sycl_MALLOC
|
||
++nnz;
|
||
if (b.size > max_size) max_size = b.size;
|
||
#endif
|
||
if (b.size >= size) {
|
||
size_t diff = b.size - size;
|
||
if (diff < best_diff) {
|
||
best_diff = diff;
|
||
ibest = i;
|
||
if (!best_diff) {
|
||
void * ptr = b.ptr;
|
||
*actual_size = b.size;
|
||
b.ptr = nullptr;
|
||
b.size = 0;
|
||
return ptr;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (ibest >= 0) {
|
||
ggml_sycl_buffer& b = buffer_pool[ibest];
|
||
void * ptr = b.ptr;
|
||
*actual_size = b.size;
|
||
b.ptr = nullptr;
|
||
b.size = 0;
|
||
return ptr;
|
||
}
|
||
void * ptr;
|
||
size_t look_ahead_size = (size_t) (1.05 * size);
|
||
|
||
SYCL_CHECK(
|
||
CHECK_TRY_ERROR(ptr = (void *)sycl::malloc_device(
|
||
look_ahead_size, *qptr)));
|
||
*actual_size = look_ahead_size;
|
||
pool_size += look_ahead_size;
|
||
|
||
#ifdef DEBUG_SYCL_MALLOC
|
||
fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, id, nnz,
|
||
(uint32_t)(max_size/1024/1024), (uint32_t)(g_sycl_pool_size[id]/1024/1024), (uint32_t)(size/1024/1024));
|
||
#endif
|
||
// GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg look_ahead_size=%lu, return %p\n", look_ahead_size, ptr);
|
||
return ptr;
|
||
}
|
||
|
||
void free(void * ptr, size_t size) override {
|
||
for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
|
||
ggml_sycl_buffer& b = buffer_pool[i];
|
||
if (b.ptr == nullptr) {
|
||
b.ptr = ptr;
|
||
b.size = size;
|
||
return;
|
||
}
|
||
}
|
||
fprintf(stderr, "WARNING: sycl buffer pool full, increase MAX_sycl_BUFFERS\n");
|
||
SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(ptr, *qptr)));
|
||
pool_size -= size;
|
||
}
|
||
};
|
||
|
||
std::unique_ptr<ggml_sycl_pool> ggml_backend_sycl_context::new_pool_for_device(queue_ptr qptr, int device) {
|
||
// TBD: NO VMM support
|
||
// if (ggml_sycl_info().devices[device].vmm) {
|
||
// return std::unique_ptr<ggml_sycl_pool>(new ggml_sycl_pool_vmm(device));
|
||
// }
|
||
return std::unique_ptr<ggml_sycl_pool>(new ggml_sycl_pool_leg(qptr, device));
|
||
}
|
||
|
||
// TBD pool with virtual memory management
|
||
// struct ggml_sycl_pool_vmm : public ggml_sycl_pool
|
||
|
||
static dpct::err0 ggml_sycl_cpy_tensor_2d(void *dst,
|
||
const struct ggml_tensor *src,
|
||
int64_t i3, int64_t i2,
|
||
int64_t i1_low, int64_t i1_high,
|
||
queue_ptr stream) try {
|
||
|
||
dpct::memcpy_direction kind;
|
||
char * src_ptr;
|
||
if (src->backend == GGML_BACKEND_TYPE_CPU) {
|
||
kind = dpct::host_to_device;
|
||
src_ptr = (char *) src->data;
|
||
// GGML_SYCL_DEBUG("ggml_sycl_cpy_tensor_2d GGML_BACKEND_TYPE_CPU src_ptr %p\n", src_ptr);
|
||
} else if (src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
|
||
GGML_ASSERT(src->backend != GGML_BACKEND_TYPE_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
|
||
kind = dpct::device_to_device;
|
||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
|
||
int id;
|
||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||
id = get_current_device_id()));
|
||
// GGML_SYCL_DEBUG("current device index %d\n", id);
|
||
src_ptr = (char *) extra->data_device[id];
|
||
} else {
|
||
// GGML_SYCL_DEBUG("GGML_ASSERT(false)\n");
|
||
GGML_ASSERT(false);
|
||
}
|
||
char * dst_ptr = (char *) dst;
|
||
|
||
GGML_TENSOR_LOCALS_1(int64_t, ne, src, ne);
|
||
GGML_TENSOR_LOCALS(int64_t, nb, src, nb);
|
||
const enum ggml_type type = src->type;
|
||
const int64_t ts = ggml_type_size(type);
|
||
const int64_t bs = ggml_blck_size(type);
|
||
int64_t i1_diff = i1_high - i1_low;
|
||
|
||
const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
|
||
if (nb0 == ts && nb1 == ts*ne0/bs) {
|
||
// GGML_SYCL_DEBUG("stream->memcpy: dst_ptr=%p, x=%p, size=%lu\n", dst_ptr, x, i1_diff * nb1);
|
||
// return CHECK_TRY_ERROR(stream->memcpy(dst_ptr, x, i1_diff * nb1));
|
||
return CHECK_TRY_ERROR(dpct::async_dpct_memcpy(dst_ptr, x, i1_diff * nb1,
|
||
kind, *stream));
|
||
|
||
} else if (nb0 == ts) {
|
||
return CHECK_TRY_ERROR(
|
||
dpct::async_dpct_memcpy(dst_ptr, ts * ne0 / bs, x, nb1,
|
||
ts * ne0 / bs, i1_diff, kind, *stream));
|
||
} else {
|
||
for (int64_t i1 = 0; i1 < i1_diff; i1++) {
|
||
const void * rx = (const void *) ((const char *) x + i1*nb1);
|
||
void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
|
||
// pretend the row is a matrix with cols=1
|
||
dpct::err0 r = CHECK_TRY_ERROR(dpct::async_dpct_memcpy(
|
||
rd, ts / bs, rx, nb0, ts / bs, ne0, kind, *stream));
|
||
/*
|
||
DPCT1001:85: The statement could not be removed.
|
||
*/
|
||
/*
|
||
DPCT1000:86: Error handling if-stmt was detected but could not be
|
||
rewritten.
|
||
*/
|
||
if (r != 0) return r;
|
||
}
|
||
return 0;
|
||
}
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
static void ggml_sycl_op_get_rows(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1, ggml_tensor *dst,
|
||
const float *src0_d, const float *src1_d,
|
||
float *dst_d, const queue_ptr &stream) {
|
||
|
||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||
|
||
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
|
||
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
|
||
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
|
||
|
||
const int32_t * src1_i32 = (const int32_t *) src1_d;
|
||
|
||
switch (src0->type) {
|
||
case GGML_TYPE_F16:
|
||
get_rows_sycl_float(ctx, src0, src1, dst, (const sycl::half *)src0_d,
|
||
src1_i32, dst_d, stream);
|
||
break;
|
||
case GGML_TYPE_F32:
|
||
get_rows_sycl_float(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||
break;
|
||
case GGML_TYPE_Q4_0:
|
||
get_rows_sycl<QK4_0, QR4_0, dequantize_q4_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||
break;
|
||
case GGML_TYPE_Q4_1:
|
||
get_rows_sycl<QK4_1, QR4_1, dequantize_q4_1>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||
break;
|
||
case GGML_TYPE_Q5_0:
|
||
get_rows_sycl<QK5_0, QR5_0, dequantize_q5_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||
break;
|
||
case GGML_TYPE_Q5_1:
|
||
get_rows_sycl<QK5_1, QR5_1, dequantize_q5_1>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||
break;
|
||
case GGML_TYPE_Q8_0:
|
||
get_rows_sycl<QK8_0, QR8_0, dequantize_q8_0>(ctx, src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
||
break;
|
||
default:
|
||
// TODO: k-quants
|
||
fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
|
||
GGML_ASSERT(false);
|
||
break;
|
||
}
|
||
}
|
||
|
||
template <class op>
|
||
inline void ggml_sycl_op_bin_bcast(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1, ggml_tensor *dst,
|
||
const float *src0_dd, const float *src1_dd,
|
||
float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||
op()(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
|
||
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
|
||
op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd,
|
||
(sycl::half *)dst_dd, main_stream);
|
||
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
||
op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd, dst_dd,
|
||
main_stream);
|
||
} else if (src0->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) {
|
||
op()(ctx, src0, src1, dst, (const int32_t *)src0_dd, (const int32_t *)src1_dd, (int32_t *)dst_dd,
|
||
main_stream);
|
||
} else if (src0->type == GGML_TYPE_I16 && dst->type == GGML_TYPE_I16) {
|
||
op()(ctx, src0, src1, dst, (const int16_t *)src0_dd, (const int16_t *)src1_dd, (int16_t *)dst_dd,
|
||
main_stream);
|
||
} else {
|
||
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
|
||
ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||
GGML_ASSERT(false);
|
||
}
|
||
}
|
||
|
||
static void ggml_sycl_op_repeat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1, ggml_tensor *dst,
|
||
const float *src0_d, const float *src1_d,
|
||
float *dst_d,
|
||
const queue_ptr &main_stream) {
|
||
|
||
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_repeat>>(ctx, dst, src0, dst, nullptr, src0_d, dst_d, main_stream);
|
||
|
||
(void) src1;
|
||
(void) src1_d;
|
||
}
|
||
|
||
inline void ggml_sycl_op_add(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
||
ggml_tensor *dst, const float *src0_dd,
|
||
const float *src1_dd, float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_add>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
|
||
}
|
||
|
||
inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
||
ggml_tensor *dst, const float *src0_dd,
|
||
const float *src1_dd, float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
|
||
|
||
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
|
||
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
|
||
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
|
||
int offset = dst->op_params[3] / 4; // offset in bytes
|
||
|
||
acc_f32_sycl(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, main_stream);
|
||
|
||
(void) dst;
|
||
}
|
||
|
||
inline void ggml_sycl_op_mul(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
||
ggml_tensor *dst, const float *src0_dd,
|
||
const float *src1_dd, float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_mul>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
|
||
}
|
||
|
||
inline void ggml_sycl_op_div(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
||
ggml_tensor *dst, const float *src0_dd,
|
||
const float *src1_dd, float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_div>>(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
|
||
}
|
||
|
||
inline void ggml_sycl_op_gelu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
||
ggml_tensor *dst, const float *src0_dd,
|
||
const float *src1_dd, float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
||
gelu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
||
|
||
(void) src1;
|
||
(void) dst;
|
||
(void) src1_dd;
|
||
}
|
||
|
||
inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
||
ggml_tensor *dst, const float *src0_dd,
|
||
const float *src1_dd, float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
||
silu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
||
|
||
(void) src1;
|
||
(void) dst;
|
||
(void) src1_dd;
|
||
}
|
||
|
||
inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1, ggml_tensor *dst,
|
||
const float *src0_dd, const float *src1_dd,
|
||
float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
||
gelu_quick_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
||
|
||
(void) src1;
|
||
(void) dst;
|
||
(void) src1_dd;
|
||
}
|
||
|
||
inline void ggml_sycl_op_tanh(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
||
ggml_tensor *dst, const float *src0_dd,
|
||
const float *src1_dd, float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
tanh_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
||
|
||
(void) src1;
|
||
(void) dst;
|
||
(void) src1_dd;
|
||
}
|
||
|
||
inline void ggml_sycl_op_relu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
||
ggml_tensor *dst, const float *src0_dd,
|
||
const float *src1_dd, float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
||
relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
||
|
||
(void) src1;
|
||
(void) dst;
|
||
(void) src1_dd;
|
||
}
|
||
|
||
static void ggml_sycl_op_hardsigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1, ggml_tensor *dst,
|
||
const float *src0_dd, const float *src1_dd,
|
||
float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
||
hardsigmoid_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
||
|
||
(void) src1;
|
||
(void) dst;
|
||
(void) src1_dd;
|
||
}
|
||
|
||
static void ggml_sycl_op_hardswish(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1, ggml_tensor *dst,
|
||
const float *src0_dd, const float *src1_dd,
|
||
float *dst_dd, const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
||
hardswish_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
||
|
||
(void) src1;
|
||
(void) dst;
|
||
(void) src1_dd;
|
||
}
|
||
|
||
inline void ggml_sycl_op_leaky_relu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1, ggml_tensor *dst,
|
||
const float *src0_dd, const float *src1_dd,
|
||
float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
||
float negative_slope;
|
||
memcpy(&negative_slope, dst->op_params, sizeof(float));
|
||
|
||
leaky_relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), negative_slope, main_stream);
|
||
|
||
(void) src1;
|
||
(void) dst;
|
||
(void) src1_dd;
|
||
}
|
||
|
||
inline void ggml_sycl_op_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
||
ggml_tensor *dst, const float *src0_dd,
|
||
const float *src1_dd, float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
||
sqr_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
||
|
||
(void) src1;
|
||
(void) dst;
|
||
(void) src1_dd;
|
||
}
|
||
|
||
inline void ggml_sycl_op_norm(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
||
ggml_tensor *dst, const float *src0_dd,
|
||
const float *src1_dd, float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
||
const int64_t ne00 = src0->ne[0];
|
||
const int64_t nrows = ggml_nrows(src0);
|
||
|
||
float eps;
|
||
memcpy(&eps, dst->op_params, sizeof(float));
|
||
|
||
norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
|
||
|
||
(void) src1;
|
||
(void) dst;
|
||
(void) src1_dd;
|
||
}
|
||
|
||
inline void ggml_sycl_op_group_norm(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1, ggml_tensor *dst,
|
||
const float *src0_dd, const float *src1_dd,
|
||
float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
||
int num_groups = dst->op_params[0];
|
||
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
|
||
group_norm_f32_sycl(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream);
|
||
|
||
(void) src1;
|
||
(void) dst;
|
||
(void) src1_dd;
|
||
}
|
||
|
||
inline void ggml_sycl_op_concat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1, ggml_tensor *dst,
|
||
const float *src0_dd, const float *src1_dd,
|
||
float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
#pragma message("TODO: generalize concat kernel for dim != 2")
|
||
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7563")
|
||
int dim = dst->op_params[0];
|
||
GGML_ASSERT(dim == 2);
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||
|
||
for (int i3 = 0; i3 < dst->ne[3]; i3++) {
|
||
concat_f32_sycl(src0_dd + i3 * (src0->nb[3] / 4), src1_dd + i3 * (src1->nb[3] / 4), dst_dd + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], main_stream);
|
||
}
|
||
|
||
(void) src1;
|
||
(void) dst;
|
||
}
|
||
|
||
inline void ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1, ggml_tensor *dst,
|
||
const float *src0_dd, const float *src1_dd,
|
||
float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||
|
||
const float sf0 = (float)dst->ne[0]/src0->ne[0];
|
||
const float sf1 = (float)dst->ne[1]/src0->ne[1];
|
||
const float sf2 = (float)dst->ne[2]/src0->ne[2];
|
||
const float sf3 = (float)dst->ne[3]/src0->ne[3];
|
||
|
||
upscale_f32_sycl(src0_dd, dst_dd, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
|
||
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3,
|
||
main_stream);
|
||
|
||
(void) src1;
|
||
(void) dst;
|
||
(void) src1_dd;
|
||
}
|
||
|
||
inline void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
||
ggml_tensor *dst, const float *src0_dd,
|
||
const float *src1_dd, float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
||
|
||
pad_f32_sycl(src0_dd, dst_dd,
|
||
src0->ne[0], src0->ne[1], src0->ne[2],
|
||
dst->ne[0], dst->ne[1], dst->ne[2], main_stream);
|
||
|
||
(void) src1;
|
||
(void) dst;
|
||
(void) src1_dd;
|
||
}
|
||
|
||
inline void ggml_sycl_op_rms_norm(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1, ggml_tensor *dst,
|
||
const float *src0_dd, const float *src1_dd,
|
||
float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
||
const int64_t ne00 = src0->ne[0];
|
||
const int64_t nrows = ggml_nrows(src0);
|
||
|
||
float eps;
|
||
memcpy(&eps, dst->op_params, sizeof(float));
|
||
|
||
rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
|
||
|
||
(void) src1;
|
||
(void) dst;
|
||
(void) src1_dd;
|
||
}
|
||
|
||
static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_SYCL_MAX_DEVICES> & tensor_split) {
|
||
int64_t min_compute_capability = INT_MAX;
|
||
int64_t max_compute_capability = INT_MIN;
|
||
for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
|
||
if (tensor_split[i] < (i + 1 < ggml_sycl_info().device_count ? tensor_split[i + 1] : 1.0f)) {
|
||
if (min_compute_capability > ggml_sycl_info().devices[i].cc) {
|
||
min_compute_capability = ggml_sycl_info().devices[i].cc;
|
||
}
|
||
if (max_compute_capability < ggml_sycl_info().devices[i].cc) {
|
||
max_compute_capability = ggml_sycl_info().devices[i].cc;
|
||
}
|
||
}
|
||
}
|
||
|
||
switch(type) {
|
||
case GGML_TYPE_Q4_0:
|
||
case GGML_TYPE_Q4_1:
|
||
return max_compute_capability >= VER_GEN9 ? 128 : 64;
|
||
case GGML_TYPE_Q5_0:
|
||
case GGML_TYPE_Q5_1:
|
||
case GGML_TYPE_Q8_0:
|
||
return 64;
|
||
case GGML_TYPE_F16:
|
||
case GGML_TYPE_F32:
|
||
return 1;
|
||
case GGML_TYPE_Q2_K:
|
||
case GGML_TYPE_Q3_K:
|
||
case GGML_TYPE_Q4_K:
|
||
case GGML_TYPE_Q5_K:
|
||
case GGML_TYPE_IQ2_XXS:
|
||
case GGML_TYPE_IQ2_XS:
|
||
case GGML_TYPE_IQ2_S:
|
||
case GGML_TYPE_IQ1_S:
|
||
case GGML_TYPE_IQ1_M:
|
||
case GGML_TYPE_IQ3_XXS:
|
||
case GGML_TYPE_IQ4_XS:
|
||
case GGML_TYPE_IQ4_NL:
|
||
return max_compute_capability >= VER_GEN9 ? 128 : 64;
|
||
case GGML_TYPE_IQ3_S:
|
||
return max_compute_capability >= VER_GEN9 ? 128 : 64;
|
||
case GGML_TYPE_Q6_K:
|
||
return 64;
|
||
default:
|
||
GGML_ASSERT(false);
|
||
}
|
||
|
||
}
|
||
|
||
inline void ggml_sycl_op_mul_mat_sycl(
|
||
ggml_backend_sycl_context & ctx,
|
||
const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
|
||
const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
|
||
float *dst_dd_i, const int64_t row_low, const int64_t row_high,
|
||
const int64_t src1_ncols, const int64_t src1_padded_row_size,
|
||
const queue_ptr &stream) try {
|
||
|
||
GGML_ASSERT(src0_dd_i != nullptr);
|
||
GGML_ASSERT(src1_ddf_i != nullptr);
|
||
GGML_ASSERT(dst_dd_i != nullptr);
|
||
|
||
const int64_t ne00 = src0->ne[0];
|
||
const int64_t ne10 = src1->ne[0];
|
||
|
||
const int64_t ne0 = dst->ne[0];
|
||
|
||
const int64_t row_diff = row_high - row_low;
|
||
|
||
int id;
|
||
SYCL_CHECK(
|
||
CHECK_TRY_ERROR(id = get_current_device_id()));
|
||
|
||
// the main device has a larger memory buffer to hold the results from all GPUs
|
||
// ldc == nrows of the matrix that cuBLAS writes into
|
||
int ldc = id == ctx.device ? ne0 : row_diff;
|
||
|
||
#ifdef GGML_SYCL_F16
|
||
bool use_fp16 = true; // TODO(Yu) SYCL capability check
|
||
#else
|
||
bool use_fp16 = false;
|
||
#endif
|
||
if ((src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
||
use_fp16 && ggml_is_contiguous(src0) && row_diff == src0->ne[1] &&
|
||
dst->op_params[0] == GGML_PREC_DEFAULT) {
|
||
|
||
// GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp16 path\n");
|
||
ggml_sycl_pool_alloc<sycl::half> src0_as_f16(ctx.pool());
|
||
if (src0->type != GGML_TYPE_F16) {
|
||
const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src0->type);
|
||
GGML_ASSERT(to_fp16_sycl != nullptr);
|
||
size_t ne = row_diff*ne00;
|
||
src0_as_f16.alloc(ne);
|
||
to_fp16_sycl(src0_dd_i, src0_as_f16.get(), ne, stream);
|
||
}
|
||
const sycl::half *src0_ptr = src0->type == GGML_TYPE_F16
|
||
? (const sycl::half *)src0_dd_i
|
||
: src0_as_f16.get();
|
||
|
||
ggml_sycl_pool_alloc<sycl::half> src1_as_f16(ctx.pool());
|
||
if (src1->type != GGML_TYPE_F16) {
|
||
const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
|
||
GGML_ASSERT(to_fp16_sycl != nullptr);
|
||
size_t ne = src1_ncols*ne10;
|
||
src1_as_f16.alloc(ne);
|
||
to_fp16_sycl(src1_ddf_i, src1_as_f16.get(), ne, stream);
|
||
}
|
||
const sycl::half *src1_ptr = src1->type == GGML_TYPE_F16
|
||
? (const sycl::half *)src1->data + src1_padded_row_size
|
||
: src1_as_f16.get();
|
||
ggml_sycl_pool_alloc<sycl::half> dst_f16(ctx.pool(), row_diff * src1_ncols);
|
||
|
||
const sycl::half alpha_f16 = 1.0f;
|
||
const sycl::half beta_f16 = 0.0f;
|
||
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm(
|
||
*stream, oneapi::mkl::transpose::trans,
|
||
oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
|
||
&alpha_f16, src0_ptr, dpct::library_data_t::real_half, ne00,
|
||
src1_ptr, dpct::library_data_t::real_half, ne10, &beta_f16,
|
||
dst_f16.get(), dpct::library_data_t::real_half, ldc,
|
||
dpct::library_data_t::real_half)));
|
||
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
|
||
to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
|
||
}
|
||
else {
|
||
// GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp32 path\n");
|
||
ggml_sycl_pool_alloc<float> src0_ddq_as_f32(ctx.pool());
|
||
ggml_sycl_pool_alloc<float> src1_ddq_as_f32(ctx.pool());
|
||
if (src0->type != GGML_TYPE_F32) {
|
||
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(src0->type);
|
||
GGML_ASSERT(to_fp32_sycl != nullptr);
|
||
src0_ddq_as_f32.alloc(row_diff*ne00);
|
||
to_fp32_sycl(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
|
||
}
|
||
if (src1->type != GGML_TYPE_F32) {
|
||
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(src1->type);
|
||
GGML_ASSERT(to_fp32_sycl != nullptr);
|
||
src1_ddq_as_f32.alloc(src1_ncols*ne10);
|
||
to_fp32_sycl(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
|
||
}
|
||
const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
|
||
const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
|
||
|
||
const float alpha = 1.0f;
|
||
const float beta = 0.0f;
|
||
|
||
SYCL_CHECK(CHECK_TRY_ERROR(oneapi::mkl::blas::column_major::gemm(
|
||
*stream, oneapi::mkl::transpose::trans,
|
||
oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
|
||
dpct::get_value(&alpha, *stream), src0_ddf_i, ne00,
|
||
src1_ddf1_i, ne10, dpct::get_value(&beta, *stream),
|
||
dst_dd_i, ldc)));
|
||
}
|
||
(void) dst;
|
||
(void) src1_ddq_i;
|
||
(void) src1_padded_row_size;
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
||
ggml_tensor *dst, const float *src0_dd,
|
||
const float *src1_dd, float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
const ggml_tensor * src2 = dst->src[2];
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
||
GGML_ASSERT(src0->type == dst->type);
|
||
|
||
const int64_t ne00 = src0->ne[0];
|
||
const int64_t ne01 = src0->ne[1];
|
||
const int64_t ne2 = dst->ne[2];
|
||
const int64_t nrows = ggml_nrows(src0);
|
||
|
||
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||
const int mode = ((int32_t *) dst->op_params)[2];
|
||
//const int n_ctx = ((int32_t *) dst->op_params)[3];
|
||
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
|
||
|
||
// RoPE alteration for extended context
|
||
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
||
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
||
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
||
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
||
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
||
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||
|
||
const float * freq_factors = nullptr;
|
||
const int32_t * pos = nullptr;
|
||
if ((mode & 1) == 0) {
|
||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||
GGML_ASSERT(src1->ne[0] == ne2);
|
||
pos = (const int32_t *) src1_dd;
|
||
}
|
||
|
||
const bool is_neox = mode & 2;
|
||
|
||
#pragma message("TODO: update rope NORM mode to match NEOX mode")
|
||
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7634")
|
||
|
||
if (is_neox) {
|
||
pos = (const int32_t *) src1_dd;
|
||
|
||
if (src2 != nullptr) {
|
||
freq_factors = (const float *) src2->data;
|
||
}
|
||
} else {
|
||
GGML_ASSERT(src2 == nullptr && "TODO: freq_factors not implemented for !is_neox");
|
||
}
|
||
|
||
rope_corr_dims corr_dims;
|
||
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v);
|
||
|
||
// compute
|
||
if (is_neox) {
|
||
if (src0->type == GGML_TYPE_F32) {
|
||
rope_neox_sycl(
|
||
(const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||
attn_factor, corr_dims, freq_factors, main_stream
|
||
);
|
||
} else if (src0->type == GGML_TYPE_F16) {
|
||
rope_neox_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd,
|
||
ne00, n_dims, nrows, pos, freq_scale, ne01,
|
||
freq_base, ext_factor, attn_factor, corr_dims,
|
||
freq_factors, main_stream);
|
||
} else {
|
||
GGML_ASSERT(false);
|
||
}
|
||
} else {
|
||
if (src0->type == GGML_TYPE_F32) {
|
||
rope_sycl(
|
||
(const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||
attn_factor, corr_dims, main_stream
|
||
);
|
||
} else if (src0->type == GGML_TYPE_F16) {
|
||
rope_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00,
|
||
nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||
attn_factor, corr_dims, main_stream);
|
||
} else {
|
||
GGML_ASSERT(false);
|
||
}
|
||
}
|
||
|
||
(void) src1;
|
||
(void) dst;
|
||
(void) src1_dd;
|
||
}
|
||
|
||
static void ggml_sycl_op_pool2d(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1, ggml_tensor *dst,
|
||
const float *src0_dd, const float *src1_dd,
|
||
float *dst_dd, const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
||
const int32_t * opts = (const int32_t *)dst->op_params;
|
||
enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
|
||
const int k0 = opts[1];
|
||
const int k1 = opts[2];
|
||
const int s0 = opts[3];
|
||
const int s1 = opts[4];
|
||
const int p0 = opts[5];
|
||
const int p1 = opts[6];
|
||
|
||
const int64_t IH = src0->ne[1];
|
||
const int64_t IW = src0->ne[0];
|
||
|
||
const int64_t N = dst->ne[3];
|
||
const int64_t OC = dst->ne[2];
|
||
const int64_t OH = dst->ne[1];
|
||
const int64_t OW = dst->ne[0];
|
||
|
||
const int parallel_elements = N * OC * OH * OW;
|
||
const int num_blocks = (parallel_elements + SYCL_POOL2D_BLOCK_SIZE - 1) / SYCL_POOL2D_BLOCK_SIZE;
|
||
sycl::range<3> block_nums(1, 1, num_blocks);
|
||
main_stream->parallel_for(
|
||
sycl::nd_range<3>(block_nums *
|
||
sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE),
|
||
sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE)),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
pool2d_nchw_kernel(IH, IW, OH, OW, k1, k0, s1, s0, p1, p0,
|
||
parallel_elements, src0_dd, dst_dd, op,
|
||
item_ct1);
|
||
});
|
||
|
||
(void) src1;
|
||
(void) src1_dd;
|
||
}
|
||
|
||
inline void ggml_sycl_op_im2col(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1, ggml_tensor *dst,
|
||
const float *src0_dd, const float *src1_dd,
|
||
float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
|
||
|
||
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
|
||
const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
|
||
const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
|
||
const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
|
||
const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
|
||
const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
|
||
|
||
const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
|
||
|
||
const int64_t IC = src1->ne[is_2D ? 2 : 1];
|
||
const int64_t IH = is_2D ? src1->ne[1] : 1;
|
||
const int64_t IW = src1->ne[0];
|
||
|
||
const int64_t KH = is_2D ? src0->ne[1] : 1;
|
||
const int64_t KW = src0->ne[0];
|
||
|
||
const int64_t OH = is_2D ? dst->ne[2] : 1;
|
||
const int64_t OW = dst->ne[1];
|
||
|
||
const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
|
||
|
||
if (dst->type == GGML_TYPE_F16) {
|
||
im2col_sycl(src1_dd, (sycl::half *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
|
||
} else {
|
||
im2col_sycl(src1_dd, (float *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
|
||
}
|
||
|
||
(void) src0;
|
||
(void) src0_dd;
|
||
}
|
||
|
||
inline void ggml_sycl_op_sum_rows(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1, ggml_tensor *dst,
|
||
const float *src0_dd, const float *src1_dd,
|
||
float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
||
const int64_t ncols = src0->ne[0];
|
||
const int64_t nrows = ggml_nrows(src0);
|
||
|
||
sum_rows_f32_sycl(src0_dd, dst_dd, ncols, nrows, main_stream);
|
||
|
||
(void) src1;
|
||
(void) dst;
|
||
(void) src1_dd;
|
||
}
|
||
|
||
inline void ggml_sycl_op_argsort(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1, ggml_tensor *dst,
|
||
const float *src0_dd, const float *src1_dd,
|
||
float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_I32);
|
||
|
||
const int64_t ncols = src0->ne[0];
|
||
const int64_t nrows = ggml_nrows(src0);
|
||
|
||
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
|
||
|
||
argsort_f32_i32_sycl(src0_dd, (int *)dst_dd, ncols, nrows, order, main_stream);
|
||
|
||
(void) src1;
|
||
(void) dst;
|
||
(void) src1_dd;
|
||
}
|
||
|
||
inline void ggml_sycl_op_diag_mask_inf(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1,
|
||
ggml_tensor *dst, const float *src0_dd,
|
||
const float *src1_dd, float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
||
const int64_t ne00 = src0->ne[0];
|
||
const int64_t ne01 = src0->ne[1];
|
||
const int nrows0 = ggml_nrows(src0);
|
||
|
||
const int n_past = ((int32_t *) dst->op_params)[0];
|
||
|
||
diag_mask_inf_f32_sycl(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
|
||
|
||
(void) src1;
|
||
(void) dst;
|
||
(void) src1_dd;
|
||
}
|
||
|
||
inline void ggml_sycl_op_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1, ggml_tensor *dst,
|
||
const float *src0_dd, const float *src1_dd,
|
||
float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
||
#pragma message("TODO: add ggml_sycl_op_soft_max() F16 src1 support")
|
||
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
|
||
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
|
||
|
||
const int64_t ne00 = src0->ne[0];
|
||
const int64_t nrows_x = ggml_nrows(src0);
|
||
const int64_t nrows_y = src0->ne[1];
|
||
|
||
float scale = 1.0f;
|
||
float max_bias = 0.0f;
|
||
|
||
memcpy(&scale, dst->op_params + 0, sizeof(float));
|
||
memcpy(&max_bias, dst->op_params + 1, sizeof(float));
|
||
|
||
soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, dst_dd, ne00,
|
||
nrows_x, nrows_y, scale, max_bias, main_stream);
|
||
}
|
||
|
||
inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
||
ggml_tensor *dst, const float *src0_dd,
|
||
const float *src1_dd, float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
||
float scale;
|
||
memcpy(&scale, dst->op_params, sizeof(float));
|
||
|
||
scale_f32_sycl(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream);
|
||
/*
|
||
DPCT1010:87: SYCL uses exceptions to report errors and does not use the
|
||
error codes. The call was replaced with 0. You need to rewrite this code.
|
||
*/
|
||
SYCL_CHECK(0);
|
||
|
||
(void) src1;
|
||
(void) dst;
|
||
(void) src1_dd;
|
||
}
|
||
|
||
inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
||
ggml_tensor *dst, const float *src0_dd,
|
||
const float *src1_dd, float *dst_dd,
|
||
const queue_ptr &main_stream) {
|
||
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||
|
||
float min;
|
||
float max;
|
||
memcpy(&min, dst->op_params, sizeof(float));
|
||
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
|
||
|
||
clamp_f32_sycl(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
|
||
/*
|
||
DPCT1010:88: SYCL uses exceptions to report errors and does not use the
|
||
error codes. The call was replaced with 0. You need to rewrite this code.
|
||
*/
|
||
SYCL_CHECK(0);
|
||
|
||
(void) src1;
|
||
(void) dst;
|
||
(void) src1_dd;
|
||
}
|
||
|
||
static void ggml_sycl_op_flatten(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1, ggml_tensor *dst,
|
||
const ggml_sycl_op_flatten_t op) try {
|
||
const int64_t nrows0 = ggml_nrows(src0);
|
||
|
||
const bool use_src1 = src1 != nullptr;
|
||
const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
|
||
|
||
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||
GGML_ASSERT( dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||
|
||
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
||
ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
||
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||
|
||
// dd = data device
|
||
float * src0_ddf = (float *) src0->data;
|
||
float * src1_ddf = use_src1 ? (float *) src1->data : nullptr;
|
||
float * dst_ddf = (float *) dst->data;
|
||
|
||
ggml_sycl_pool_alloc<float> src0_f(ctx.pool());
|
||
ggml_sycl_pool_alloc<float> src1_f(ctx.pool());
|
||
ggml_sycl_pool_alloc<float> dst_f(ctx.pool());
|
||
|
||
ggml_sycl_set_device(ctx.device);
|
||
queue_ptr main_stream = ctx.stream();
|
||
// GGML_SYCL_DEBUG("ctx.device=%d, main_stream=%p src0_on_device=%d, src1_on_device=%d, dst_on_device=%d\n",
|
||
// ctx.device, main_stream, src0_on_device, src1_on_device, dst_on_device);
|
||
|
||
// do the computation
|
||
op(ctx, src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
|
||
// print_ggml_tensor("tensor", dst);
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
static void ggml_sycl_set_peer_access(const int n_tokens, int main_device) {
|
||
static bool peer_access_enabled = false;
|
||
|
||
const bool enable_peer_access = n_tokens <= GGML_SYCL_PEER_MAX_BATCH_SIZE;
|
||
|
||
if (peer_access_enabled == enable_peer_access) {
|
||
return;
|
||
}
|
||
|
||
#ifdef NDEBUG
|
||
for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
|
||
SYCL_CHECK(ggml_sycl_set_device(i));
|
||
}
|
||
|
||
for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
|
||
SYCL_CHECK(ggml_sycl_set_device(i));
|
||
|
||
for (int id_other = 0; id_other < ggml_sycl_info().device_count; ++id_other) {
|
||
if (i == id_other) {
|
||
continue;
|
||
}
|
||
if (i != main_device && id_other != main_device) {
|
||
continue;
|
||
}
|
||
|
||
// int can_access_peer;
|
||
// SYCL_CHECK(syclDeviceCanAccessPeer(&can_access_peer, id, id_other));
|
||
// if (can_access_peer) {
|
||
// if (enable_peer_access) {
|
||
// SYCL_CHECK(syclDeviceEnablePeerAccess(id_other, 0));
|
||
// } else {
|
||
// SYCL_CHECK(syclDeviceDisablePeerAccess(id_other));
|
||
// }
|
||
// }
|
||
}
|
||
}
|
||
#endif // NDEBUG
|
||
|
||
peer_access_enabled = enable_peer_access;
|
||
}
|
||
|
||
struct ggml_backend_sycl_split_buffer_type_context {
|
||
std::array<float, GGML_SYCL_MAX_DEVICES> tensor_split;
|
||
};
|
||
|
||
static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1, ggml_tensor *dst,
|
||
ggml_sycl_op_mul_mat_t op,
|
||
const bool convert_src1_to_q8_1) try {
|
||
|
||
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
|
||
|
||
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
|
||
const int64_t nrows1 = ggml_nrows(src1);
|
||
|
||
GGML_ASSERT(ne03 == ne13);
|
||
|
||
const int64_t ne0 = dst->ne[0];
|
||
const int64_t ne1 = dst->ne[1];
|
||
|
||
const int nb2 = dst->nb[2];
|
||
const int nb3 = dst->nb[3];
|
||
|
||
GGML_ASSERT(dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||
GGML_ASSERT(src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||
GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
|
||
|
||
GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
|
||
|
||
const int64_t i02_divisor = ne12 / ne02;
|
||
|
||
const size_t src0_ts = ggml_type_size(src0->type);
|
||
const size_t src0_bs = ggml_blck_size(src0->type);
|
||
const size_t q8_1_ts = sizeof(block_q8_1);
|
||
const size_t q8_1_bs = QK8_1;
|
||
|
||
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
||
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
||
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||
|
||
const bool src0_is_contiguous = ggml_is_contiguous(src0);
|
||
const bool src1_is_contiguous = ggml_is_contiguous(src1);
|
||
|
||
int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
|
||
|
||
const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
||
GGML_ASSERT(!(split && ne02 > 1));
|
||
GGML_ASSERT(!(split && ne03 > 1));
|
||
GGML_ASSERT(!(split && ne02 < ne12));
|
||
|
||
std::array<float, GGML_SYCL_MAX_DEVICES> tensor_split;
|
||
if (split) {
|
||
// TODO: check that src0->buffer->buft is a split buffer type, replace GGML_BACKEND_TYPE_GPU_SPLIT check
|
||
// GGML_ASSERT(src0->buffer != nullptr && src0->buffer->buft == ...);
|
||
ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *) src0->buffer->buft->context;
|
||
tensor_split = buft_ctx->tensor_split;
|
||
}
|
||
|
||
struct dev_data {
|
||
ggml_sycl_pool_alloc<char> src0_dd_alloc;
|
||
ggml_sycl_pool_alloc<float> src1_ddf_alloc;
|
||
ggml_sycl_pool_alloc<char> src1_ddq_alloc;
|
||
ggml_sycl_pool_alloc<float> dst_dd_alloc;
|
||
|
||
char *src0_dd = nullptr;
|
||
float *src1_ddf = nullptr; // float
|
||
char *src1_ddq = nullptr; // q8_1
|
||
float *dst_dd = nullptr;
|
||
|
||
int64_t row_low;
|
||
int64_t row_high;
|
||
};
|
||
|
||
dev_data dev[GGML_SYCL_MAX_DEVICES];
|
||
|
||
int used_devices = 0;
|
||
queue_ptr main_stream = ctx.stream();
|
||
|
||
for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
|
||
// by default, use all rows
|
||
dev[i].row_low = 0;
|
||
dev[i].row_high = ne01;
|
||
|
||
// for multi GPU, get the row boundaries from tensor split
|
||
// and round to mul_mat_q tile sizes
|
||
if (split) {
|
||
const int64_t rounding = get_row_rounding(src0->type, tensor_split);
|
||
|
||
if (i != 0) {
|
||
dev[i].row_low = ne01*tensor_split[i];
|
||
if (dev[i].row_low < ne01) {
|
||
dev[i].row_low -= dev[i].row_low % rounding;
|
||
}
|
||
}
|
||
|
||
if (i != ggml_sycl_info().device_count - 1) {
|
||
dev[i].row_high = ne01*tensor_split[i + 1];
|
||
if (dev[i].row_high < ne01) {
|
||
dev[i].row_high -= dev[i].row_high % rounding;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
|
||
if ((!split && i != ctx.device) || dev[i].row_low == dev[i].row_high) {
|
||
continue;
|
||
}
|
||
|
||
used_devices++;
|
||
|
||
const bool src1_on_device = i == ctx.device;
|
||
const bool dst_on_device = i == ctx.device;
|
||
|
||
ggml_sycl_set_device(i);
|
||
queue_ptr stream = ctx.stream(i, 0);
|
||
|
||
if (src0_is_contiguous) {
|
||
dev[i].src0_dd = (char *) src0->data;
|
||
} else {
|
||
dev[i].src0_dd = dev[i].src0_dd_alloc.alloc(ctx.pool(i), ggml_nbytes(src0));
|
||
}
|
||
|
||
if (src1_on_device && src1_is_contiguous) {
|
||
dev[i].src1_ddf = (float *) src1->data;
|
||
} else {
|
||
dev[i].src1_ddf = dev[i].src1_ddf_alloc.alloc(ctx.pool(i), ggml_nelements(src1));
|
||
}
|
||
|
||
if (convert_src1_to_q8_1) {
|
||
dev[i].src1_ddq = dev[i].src1_ddq_alloc.alloc(ctx.pool(i), nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
|
||
|
||
if (src1_on_device && src1_is_contiguous) {
|
||
quantize_row_q8_1_sycl(dev[i].src1_ddf, dev[i].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
|
||
/*
|
||
DPCT1010:90: SYCL uses exceptions to report errors and does not
|
||
use the error codes. The call was replaced with 0. You need to
|
||
rewrite this code.
|
||
*/
|
||
SYCL_CHECK(0);
|
||
}
|
||
}
|
||
|
||
if (dst_on_device) {
|
||
dev[i].dst_dd = (float *) dst->data;
|
||
} else {
|
||
const size_t size_dst_ddf = split ? (dev[i].row_high - dev[i].row_low)*ne1 : ggml_nelements(dst);
|
||
dev[i].dst_dd = dev[i].dst_dd_alloc.alloc(ctx.pool(i), size_dst_ddf);
|
||
}
|
||
}
|
||
|
||
// if multiple devices are used they need to wait for the main device
|
||
// here an event is recorded that signals that the main device has finished calculating the input data
|
||
if (split && used_devices > 1) {
|
||
ggml_sycl_set_device(ctx.device);
|
||
/*
|
||
DPCT1024:91: The original code returned the error code that was further
|
||
consumed by the program logic. This original code was replaced with 0.
|
||
You may need to rewrite the program logic consuming the error code.
|
||
*/
|
||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||
*src0_extra->events[ctx.device][0] =
|
||
ctx.stream()->ext_oneapi_submit_barrier()));
|
||
}
|
||
|
||
const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
|
||
for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
|
||
const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_SYCL_MAX_STREAMS : 0;
|
||
const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
|
||
|
||
for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
|
||
if ((!split && i != ctx.device) || dev[i].row_low == dev[i].row_high) {
|
||
continue;
|
||
}
|
||
|
||
const bool src1_on_device = i == ctx.device;
|
||
const bool dst_on_device = i == ctx.device;
|
||
const int64_t row_diff = dev[i].row_high - dev[i].row_low;
|
||
|
||
ggml_sycl_set_device(i);
|
||
queue_ptr stream = ctx.stream(i, is);
|
||
|
||
// wait for main GPU data if necessary
|
||
if (split && (i != ctx.device || is != 0)) {
|
||
/*
|
||
DPCT1009:163: SYCL uses exceptions to report errors and does not
|
||
use the error codes. The original code was commented out and a
|
||
warning string was inserted. You need to rewrite this code.
|
||
*/
|
||
SYCL_CHECK(CHECK_TRY_ERROR(stream->ext_oneapi_submit_barrier(
|
||
{*src0_extra->events[ctx.device][0]})));
|
||
}
|
||
|
||
for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
|
||
const int64_t i03 = i0 / ne12;
|
||
const int64_t i02 = i0 % ne12;
|
||
|
||
const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
|
||
|
||
// for split tensors the data begins at i0 == i0_offset_low
|
||
char * src0_dd_i = dev[i].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
|
||
float * src1_ddf_i = dev[i].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
|
||
char * src1_ddq_i = dev[i].src1_ddq + src1_ddq_i_offset;
|
||
float * dst_dd_i = dev[i].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff);
|
||
|
||
// the main device memory buffer can be on VRAM scratch, with space for all partial results
|
||
// in that case an offset on dst_ddf_i is needed
|
||
if (i == ctx.device) {
|
||
dst_dd_i += dev[i].row_low; // offset is 0 if no tensor split
|
||
}
|
||
|
||
// copy src0, src1 to device if necessary
|
||
if (src1_is_contiguous) {
|
||
if (i != ctx.device) {
|
||
if (convert_src1_to_q8_1) {
|
||
char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset;
|
||
SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(
|
||
src1_ddq_i, src1_ddq_i_source,
|
||
src1_ncols * src1_padded_col_size * q8_1_ts /
|
||
q8_1_bs).wait()));
|
||
} else {
|
||
|
||
float * src1_ddf_i_source = (float *) src1_extra->data_device[ctx.device];
|
||
src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
|
||
|
||
SYCL_CHECK(CHECK_TRY_ERROR(dev2dev_memcpy(*stream, *main_stream,
|
||
src1_ddf_i, src1_ddf_i_source,
|
||
src1_ncols * ne10 * sizeof(float))));
|
||
}
|
||
}
|
||
} else if (src1_on_device && !src1_is_contiguous) {
|
||
SYCL_CHECK(ggml_sycl_cpy_tensor_2d(
|
||
src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
|
||
} else {
|
||
GGML_ASSERT(false);
|
||
}
|
||
|
||
if (convert_src1_to_q8_1 && !src1_is_contiguous) {
|
||
quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
|
||
/*
|
||
DPCT1010:92: SYCL uses exceptions to report errors and does
|
||
not use the error codes. The call was replaced with 0. You
|
||
need to rewrite this code.
|
||
*/
|
||
SYCL_CHECK(0);
|
||
}
|
||
|
||
if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
|
||
SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[i].row_low, dev[i].row_high, stream));
|
||
}
|
||
if (src1->type == GGML_TYPE_F16) {
|
||
src1_padded_col_size = (i0 * ne11 + src1_col_0) * ne10;
|
||
}
|
||
// do the computation
|
||
SYCL_CHECK(CHECK_TRY_ERROR(op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
|
||
dev[i].row_low, dev[i].row_high, src1_ncols, src1_padded_col_size, stream)));
|
||
/*
|
||
DPCT1010:93: SYCL uses exceptions to report errors and does not
|
||
use the error codes. The call was replaced with 0. You need to
|
||
rewrite this code.
|
||
*/
|
||
SYCL_CHECK(0);
|
||
|
||
// copy dst to host or other device if necessary
|
||
if (!dst_on_device) {
|
||
void * dst_off_device = dst->data;
|
||
if (split) {
|
||
// src0 = weight matrix is saved as a transposed matrix for better memory layout.
|
||
// dst is NOT transposed.
|
||
// The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
|
||
// Instead they need to be copied to the correct slice in ne0 = dst row index.
|
||
// If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
|
||
float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
|
||
GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
|
||
dhf_dst_i += src1_col_0*ne0 + dev[i].row_low;
|
||
|
||
SYCL_CHECK(CHECK_TRY_ERROR(dpct::async_dpct_memcpy(
|
||
dhf_dst_i, ne0 * sizeof(float), dst_dd_i,
|
||
row_diff * sizeof(float), row_diff * sizeof(float),
|
||
src1_ncols, dpct::device_to_device, *stream)));
|
||
} else {
|
||
float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
|
||
GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
|
||
dhf_dst_i += src1_col_0*ne0;
|
||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||
stream->memcpy(dhf_dst_i, dst_dd_i,
|
||
src1_ncols * ne0 * sizeof(float)).wait()));
|
||
}
|
||
}
|
||
|
||
// add event for the main device to wait on until other device is done
|
||
if (split && (i != ctx.device || is != 0)) {
|
||
/*
|
||
DPCT1024:94: The original code returned the error code that
|
||
was further consumed by the program logic. This original
|
||
code was replaced with 0. You may need to rewrite the
|
||
program logic consuming the error code.
|
||
*/
|
||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||
*src0_extra->events[i][is] =
|
||
stream->ext_oneapi_submit_barrier()));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// main device waits for all other devices to be finished
|
||
if (split && ggml_sycl_info().device_count > 1) {
|
||
int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
|
||
is_max = is_max <= GGML_SYCL_MAX_STREAMS ? is_max : GGML_SYCL_MAX_STREAMS;
|
||
|
||
ggml_sycl_set_device(ctx.device);
|
||
for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
|
||
if (dev[i].row_low == dev[i].row_high) {
|
||
continue;
|
||
}
|
||
for (int64_t is = 0; is < is_max; ++is) {
|
||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||
ctx.stream()->ext_oneapi_submit_barrier(
|
||
{*src0_extra->events[i][is]})));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
|
||
static void ggml_sycl_repeat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_SYCL_DEBUG("call %s\n", __func__);
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_repeat);
|
||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||
}
|
||
|
||
static void ggml_sycl_get_rows(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_SYCL_DEBUG("call %s\n", __func__);
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_get_rows);
|
||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||
}
|
||
|
||
static void ggml_sycl_add(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_SYCL_DEBUG("call %s\n", __func__);
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_add);
|
||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||
}
|
||
|
||
static void ggml_sycl_acc(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_SYCL_DEBUG("call %s\n", __func__);
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_acc);
|
||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||
}
|
||
|
||
static void ggml_sycl_mul(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_SYCL_DEBUG("call %s\n", __func__);
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_mul);
|
||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||
}
|
||
|
||
static void ggml_sycl_div(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_SYCL_DEBUG("call %s\n", __func__);
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_div);
|
||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||
}
|
||
|
||
static void ggml_sycl_gelu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_SYCL_DEBUG("call %s\n", __func__);
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_gelu);
|
||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||
}
|
||
|
||
static void ggml_sycl_silu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_SYCL_DEBUG("call %s\n", __func__);
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_silu);
|
||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||
}
|
||
|
||
static void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_SYCL_DEBUG("call %s\n", __func__);
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_gelu_quick);
|
||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||
}
|
||
|
||
static void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_SYCL_DEBUG("call %s\n", __func__);
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_tanh);
|
||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||
}
|
||
|
||
static void ggml_sycl_relu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_SYCL_DEBUG("call %s\n", __func__);
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_relu);
|
||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||
}
|
||
|
||
static void ggml_sycl_hardsigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_SYCL_DEBUG("call %s\n", __func__);
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_hardsigmoid);
|
||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||
}
|
||
|
||
static void ggml_sycl_hardswish(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_SYCL_DEBUG("call %s\n", __func__);
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_hardswish);
|
||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||
}
|
||
|
||
static void ggml_sycl_leaky_relu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_SYCL_DEBUG("call %s\n", __func__);
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_leaky_relu);
|
||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||
}
|
||
|
||
static void ggml_sycl_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_SYCL_DEBUG("call %s\n", __func__);
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sqr);
|
||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||
}
|
||
|
||
static void ggml_sycl_norm(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_SYCL_DEBUG("call %s\n", __func__);
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_norm);
|
||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||
}
|
||
|
||
static void ggml_sycl_group_norm(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_SYCL_DEBUG("call %s\n", __func__);
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_group_norm);
|
||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||
}
|
||
|
||
static void ggml_sycl_concat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_SYCL_DEBUG("call %s\n", __func__);
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_concat);
|
||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||
}
|
||
|
||
static void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_SYCL_DEBUG("call %s\n", __func__);
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_upscale);
|
||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||
}
|
||
|
||
static void ggml_sycl_pad(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_SYCL_DEBUG("call %s\n", __func__);
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_pad);
|
||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||
}
|
||
|
||
|
||
static void ggml_sycl_rms_norm(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_SYCL_DEBUG("call %s\n", __func__);
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_rms_norm);
|
||
GGML_SYCL_DEBUG("call %s done\n", __func__);
|
||
}
|
||
|
||
static void ggml_sycl_mul_mat_vec_p021(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1,
|
||
ggml_tensor *dst) try {
|
||
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
||
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
|
||
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
|
||
const int64_t ne00 = src0->ne[0];
|
||
const int64_t ne01 = src0->ne[1];
|
||
const int64_t ne02 = src0->ne[2];
|
||
|
||
const int64_t ne12 = src1->ne[2];
|
||
|
||
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
|
||
queue_ptr main_stream = ctx.stream();
|
||
|
||
void * src0_ddq = src0->data;
|
||
float * src1_ddf = (float *) src1->data;
|
||
float * dst_ddf = (float *) dst->data;
|
||
|
||
ggml_mul_mat_p021_f16_f32_sycl(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
static void ggml_sycl_mul_mat_vec_nc(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1,
|
||
ggml_tensor *dst) try {
|
||
GGML_ASSERT(!ggml_is_transposed(src0));
|
||
GGML_ASSERT(!ggml_is_transposed(src1));
|
||
GGML_ASSERT(!ggml_is_permuted(src0));
|
||
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
|
||
const int64_t ne00 = src0->ne[0];
|
||
const int64_t ne01 = src0->ne[1];
|
||
const int64_t ne02 = src0->ne[2];
|
||
|
||
const int64_t nb01 = src0->nb[1];
|
||
const int64_t nb02 = src0->nb[2];
|
||
|
||
const int64_t ne12 = src1->ne[2];
|
||
|
||
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
|
||
queue_ptr main_stream = ctx.stream();
|
||
|
||
void * src0_ddq = src0->data;
|
||
float * src1_ddf = (float *) src1->data;
|
||
float * dst_ddf = (float *) dst->data;
|
||
|
||
const int64_t row_stride_x = nb01 / sizeof(sycl::half);
|
||
const int64_t channel_stride_x = nb02 / sizeof(sycl::half);
|
||
|
||
ggml_mul_mat_vec_nc_f16_f32_sycl(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
static void k_compute_batched_ptrs(const sycl::half *src0_as_f16,
|
||
const sycl::half *src1_as_f16, char *dst,
|
||
const void **ptrs_src, void **ptrs_dst,
|
||
int64_t ne12, int64_t ne13, int64_t ne23,
|
||
size_t nb02, size_t nb03, size_t nb12,
|
||
size_t nb13, size_t nbd2, size_t nbd3,
|
||
int64_t r2, int64_t r3,
|
||
const sycl::nd_item<3> &item_ct1) {
|
||
int64_t i13 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
|
||
item_ct1.get_local_id(2);
|
||
int64_t i12 = item_ct1.get_group(1) * item_ct1.get_local_range(1) +
|
||
item_ct1.get_local_id(1);
|
||
|
||
if (i13 >= ne13 || i12 >= ne12) {
|
||
return;
|
||
}
|
||
|
||
int64_t i03 = i13 / r3;
|
||
int64_t i02 = i12 / r2;
|
||
|
||
ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
|
||
ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
|
||
ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
|
||
}
|
||
|
||
static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx,
|
||
const ggml_tensor *src0,
|
||
const ggml_tensor *src1,
|
||
ggml_tensor *dst) try {
|
||
GGML_ASSERT(!ggml_is_transposed(src0));
|
||
GGML_ASSERT(!ggml_is_transposed(src1));
|
||
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||
|
||
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
||
const int64_t ne_dst = ggml_nelements(dst);
|
||
|
||
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
|
||
queue_ptr main_stream = ctx.stream();;
|
||
|
||
bool no_mixed_dtypes = main_stream->get_backend() == sycl::backend::ext_oneapi_cuda ||
|
||
main_stream->get_backend() == sycl::backend::ext_oneapi_hip;
|
||
|
||
|
||
void * src0_ddq = src0->data;
|
||
sycl::half *src0_as_f16 = (sycl::half *)src0_ddq;
|
||
float * src1_ddf = (float *) src1->data;
|
||
float * dst_ddf = (float *) dst->data;
|
||
|
||
// convert src1 to fp16
|
||
ggml_sycl_pool_alloc<sycl::half> src1_f16_alloc(ctx.pool());
|
||
if (src1->type != GGML_TYPE_F16) {
|
||
const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
|
||
const int64_t ne_src1 = ggml_nelements(src1);
|
||
src1_f16_alloc.alloc(ne_src1);
|
||
GGML_ASSERT(to_fp16_sycl != nullptr);
|
||
to_fp16_sycl(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
|
||
}
|
||
sycl::half *src1_f16 = src1->type == GGML_TYPE_F16 ? (sycl::half *)src1_ddf
|
||
: src1_f16_alloc.get();
|
||
|
||
ggml_sycl_pool_alloc<sycl::half> dst_f16(ctx.pool());
|
||
char * dst_t;
|
||
|
||
dpct::library_data_t cu_compute_type = dpct::library_data_t::real_float;
|
||
dpct::library_data_t cu_data_type = dpct::library_data_t::real_float;
|
||
if (no_mixed_dtypes) {
|
||
cu_compute_type = dpct::library_data_t::real_half;
|
||
cu_data_type = dpct::library_data_t::real_half;
|
||
}
|
||
|
||
// dst strides
|
||
size_t nbd2 = dst->nb[2];
|
||
size_t nbd3 = dst->nb[3];
|
||
|
||
const float alpha_f32 = 1.0f;
|
||
const float beta_f32 = 0.0f;
|
||
|
||
const sycl::half alpha_f16 = 1.0f;
|
||
const sycl::half beta_f16 = 0.0f;
|
||
|
||
const void * alpha = &alpha_f32;
|
||
const void * beta = &beta_f32;
|
||
if (no_mixed_dtypes) {
|
||
alpha = &alpha_f16;
|
||
beta = &beta_f16;
|
||
}
|
||
|
||
// TODO: Renable (dst->op_params[0] =! GGML_PREC_DEFAULT) pathway
|
||
// when oneMKL open source supports half, half, float, float: datatypes
|
||
|
||
dst_t = (char *) dst_ddf;
|
||
if (no_mixed_dtypes) {
|
||
dst_t = (char *) dst_f16.alloc(ne_dst);
|
||
|
||
nbd2 /= sizeof(float) / sizeof(sycl::half);
|
||
nbd3 /= sizeof(float) / sizeof(sycl::half);
|
||
}
|
||
|
||
GGML_ASSERT(ne12 % ne02 == 0);
|
||
GGML_ASSERT(ne13 % ne03 == 0);
|
||
|
||
// broadcast factors
|
||
const int64_t r2 = ne12/ne02;
|
||
const int64_t r3 = ne13/ne03;
|
||
|
||
if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
|
||
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
|
||
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
|
||
*main_stream, oneapi::mkl::transpose::trans,
|
||
oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
|
||
(const char *)src0_as_f16, dpct::library_data_t::real_half,
|
||
nb01 / nb00, nb02 / nb00,
|
||
(const char *)src1_f16, dpct::library_data_t::real_half,
|
||
nb11 / nb10, nb12 / nb10, beta,
|
||
(char *)dst_t, cu_data_type, ne01, nb2 / nb0,
|
||
ne12 * ne13, cu_compute_type)));
|
||
} else {
|
||
const int ne23 = ne12*ne13;
|
||
|
||
ggml_sycl_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
|
||
ggml_sycl_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23);
|
||
|
||
sycl::range<3> block_dims(1, ne12, ne13);
|
||
/*
|
||
DPCT1049:47: The work-group size passed to the SYCL kernel may exceed
|
||
the limit. To get the device limit, query
|
||
info::device::max_work_group_size. Adjust the work-group size if needed.
|
||
*/
|
||
{
|
||
dpct::has_capability_or_fail(main_stream->get_device(),
|
||
{sycl::aspect::fp16});
|
||
|
||
main_stream->submit([&](sycl::handler &cgh) {
|
||
const void **ptrs_src_get = ptrs_src.get();
|
||
void **ptrs_dst_get = ptrs_dst.get();
|
||
size_t nb12_scaled = src1->type == GGML_TYPE_F16 ? nb12 : nb12 / 2;
|
||
size_t nb13_scaled = src1->type == GGML_TYPE_F16 ? nb13 : nb13 / 2;
|
||
cgh.parallel_for(sycl::nd_range<3>(block_dims, block_dims),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
k_compute_batched_ptrs(
|
||
src0_as_f16, src1_f16,
|
||
dst_t, ptrs_src_get,
|
||
ptrs_dst_get, ne12, ne13, ne23,
|
||
nb02, nb03, nb12_scaled, nb13_scaled,
|
||
nbd2, nbd3, r2, r3, item_ct1);
|
||
});
|
||
});
|
||
}
|
||
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
|
||
*main_stream, oneapi::mkl::transpose::trans,
|
||
oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
|
||
(const void **)(ptrs_src.get() + 0 * ne23),
|
||
dpct::library_data_t::real_half, nb01 / nb00,
|
||
(const void **)(ptrs_src.get() + 1 * ne23),
|
||
dpct::library_data_t::real_half, nb11 / nb10, beta,
|
||
(void **)(ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23,
|
||
cu_compute_type)));
|
||
}
|
||
|
||
if (no_mixed_dtypes) {
|
||
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
|
||
to_fp32_sycl(dst_f16.get(), dst_ddf, ne_dst, main_stream);
|
||
}
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
inline bool ggml_sycl_supports_mmq(enum ggml_type type) {
|
||
// TODO: accuracy issues in MMQ
|
||
return false;
|
||
}
|
||
|
||
bool ggml_sycl_supports_dmmv(enum ggml_type type) {
|
||
switch (type) {
|
||
case GGML_TYPE_Q4_0:
|
||
case GGML_TYPE_Q4_1:
|
||
case GGML_TYPE_Q5_0:
|
||
case GGML_TYPE_Q5_1:
|
||
case GGML_TYPE_Q8_0:
|
||
case GGML_TYPE_Q2_K:
|
||
case GGML_TYPE_Q3_K:
|
||
case GGML_TYPE_Q4_K:
|
||
case GGML_TYPE_Q5_K:
|
||
case GGML_TYPE_Q6_K:
|
||
case GGML_TYPE_F16:
|
||
return true;
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
const bool split = ggml_backend_buffer_is_sycl_split(src0->buffer);
|
||
|
||
int64_t min_compute_capability = INT_MAX;
|
||
|
||
if (split) {
|
||
ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *) src0->buffer->buft->context;
|
||
auto & tensor_split = buft_ctx->tensor_split;
|
||
for (int id = 0; id < ggml_sycl_info().device_count; ++id) {
|
||
// skip devices that are not going to do any work:
|
||
if (tensor_split[id] >= (id + 1 < ggml_sycl_info().device_count ? tensor_split[id + 1] : 1.0f)) {
|
||
continue;
|
||
}
|
||
|
||
if (min_compute_capability > ggml_sycl_info().devices[id].cc) {
|
||
min_compute_capability = ggml_sycl_info().devices[id].cc;
|
||
}
|
||
}
|
||
} else {
|
||
min_compute_capability = ggml_sycl_info().devices[ctx.device].cc;
|
||
}
|
||
|
||
// check data types and tensor shapes for custom matrix multiplication kernels:
|
||
bool use_dequantize_mul_mat_vec = ggml_sycl_supports_dmmv(src0->type)
|
||
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
|
||
&& src0->ne[0] % GGML_SYCL_DMMV_X == 0 && src1->ne[1] == 1;
|
||
|
||
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
|
||
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
|
||
&& src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
|
||
|
||
bool use_mul_mat_q = ggml_sycl_supports_mmq(src0->type)
|
||
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
|
||
|
||
// mmvq and mmq need the __dp4a instruction which is available for gen12+
|
||
// Workaround in https://github.com/ggerganov/llama.cpp/commit/95f84d5ce8b449a9b16009434aca800df504a02e
|
||
use_mul_mat_q = use_mul_mat_q && (src0->type != GGML_TYPE_IQ2_XXS);
|
||
#ifdef SYCL_USE_XMX
|
||
use_mul_mat_q = use_mul_mat_q && (src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
|
||
#endif // SYCL_USE_XMX
|
||
|
||
if (!split && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
|
||
// KQ single-batch
|
||
ggml_sycl_mul_mat_vec_p021(ctx, src0, src1, dst);
|
||
} else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
|
||
// KQV single-batch
|
||
ggml_sycl_mul_mat_vec_nc(ctx, src0, src1, dst);
|
||
} else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
|
||
// KQ + KQV multi-batch
|
||
ggml_sycl_mul_mat_batched_sycl(ctx, src0, src1, dst);
|
||
} else if (use_dequantize_mul_mat_vec) {
|
||
ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, false);
|
||
} else if (use_mul_mat_vec_q) {
|
||
ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_vec_q, true);
|
||
} else if (use_mul_mat_q) {
|
||
ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_q, true);
|
||
} else {
|
||
ggml_sycl_op_mul_mat(ctx, src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
|
||
}
|
||
}
|
||
|
||
|
||
struct mmid_row_mapping {
|
||
int32_t i1;
|
||
int32_t i2;
|
||
};
|
||
|
||
__dpct_inline__ static void k_copy_src1_to_contiguous(
|
||
const char *__restrict__ src1_original, char *__restrict__ src1_contiguous,
|
||
int *__restrict__ cur_src1_row, mmid_row_mapping *__restrict__ row_mapping,
|
||
const char *__restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
|
||
int64_t ne11, int64_t ne10, size_t nb11, size_t nb12,
|
||
const sycl::nd_item<3> &item_ct1, int &src1_row) {
|
||
int32_t iid1 = item_ct1.get_group(2);
|
||
int32_t id = item_ct1.get_group(1);
|
||
|
||
const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);
|
||
|
||
if (row_id_i != i02) {
|
||
return;
|
||
}
|
||
|
||
const int64_t i11 = id % ne11;
|
||
const int64_t i12 = iid1;
|
||
|
||
if (item_ct1.get_local_id(2) == 0) {
|
||
src1_row =
|
||
dpct::atomic_fetch_add<sycl::access::address_space::generic_space>(
|
||
cur_src1_row, 1);
|
||
row_mapping[src1_row] = {id, iid1};
|
||
}
|
||
/*
|
||
DPCT1065:194: Consider replacing sycl::nd_item::barrier() with
|
||
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better
|
||
performance if there is no access to global memory.
|
||
*/
|
||
item_ct1.barrier();
|
||
|
||
const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
|
||
float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);
|
||
|
||
#pragma unroll
|
||
for (int i = item_ct1.get_local_id(2); i < ne10;
|
||
i += item_ct1.get_local_range(2)) {
|
||
src1_row_contiguous[i] = src1_row_original[i];
|
||
}
|
||
}
|
||
|
||
__dpct_inline__ static void k_copy_dst_from_contiguous(
|
||
char *__restrict__ dst_original, const char *__restrict__ dst_contiguous,
|
||
const mmid_row_mapping *__restrict__ row_mapping, int64_t ne0, size_t nb1,
|
||
size_t nb2, const sycl::nd_item<3> &item_ct1) {
|
||
int32_t i = item_ct1.get_group(2);
|
||
|
||
const int32_t i1 = row_mapping[i].i1;
|
||
const int32_t i2 = row_mapping[i].i2;
|
||
|
||
const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
|
||
float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);
|
||
|
||
#pragma unroll
|
||
for (int j = item_ct1.get_local_id(2); j < ne0;
|
||
j += item_ct1.get_local_range(2)) {
|
||
dst_row_original[j] = dst_row_contiguous[j];
|
||
}
|
||
}
|
||
|
||
static void ggml_sycl_mul_mat_id(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
||
const ggml_tensor *src1,
|
||
ggml_tensor *dst) try {
|
||
GGML_ASSERT(!ggml_backend_buffer_is_sycl_split(src0->buffer) && "mul_mat_id does not support split buffers");
|
||
|
||
const ggml_tensor *ids = dst->src[2];
|
||
GGML_TENSOR_BINARY_OP_LOCALS
|
||
|
||
const queue_ptr stream = ctx.stream();
|
||
|
||
const int64_t n_as = ne02;
|
||
const int64_t n_ids = ids->ne[0];
|
||
|
||
std::vector<char> ids_host(ggml_nbytes(ids));
|
||
const char * ids_dev = (const char *) ids->data;
|
||
|
||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||
stream->memcpy(ids_host.data(), ids_dev, ggml_nbytes(ids))));
|
||
SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
|
||
|
||
const ggml_tensor_extra_gpu *src0_extra =
|
||
(const ggml_tensor_extra_gpu *)src0->extra;
|
||
const ggml_tensor_extra_gpu *src1_extra =
|
||
(const ggml_tensor_extra_gpu *)src1->extra;
|
||
const ggml_tensor_extra_gpu *dst_extra =
|
||
(const ggml_tensor_extra_gpu *)dst->extra;
|
||
|
||
ggml_tensor_extra_gpu src0_row_extra;
|
||
ggml_tensor_extra_gpu src1_row_extra;
|
||
ggml_tensor_extra_gpu dst_row_extra;
|
||
|
||
ggml_tensor src0_row = *src0;
|
||
ggml_tensor src1_row = *src1;
|
||
ggml_tensor dst_row = *dst;
|
||
|
||
src1_row.backend = GGML_BACKEND_TYPE_GPU;
|
||
dst_row.backend = GGML_BACKEND_TYPE_GPU;
|
||
|
||
src0_row.extra = &src0_row_extra;
|
||
src1_row.extra = &src1_row_extra;
|
||
dst_row.extra = &dst_row_extra;
|
||
|
||
char *src0_original = src1->backend == GGML_BACKEND_TYPE_CPU
|
||
? (char *)src0->data
|
||
: (char *)src0_extra->data_device[ctx.device];
|
||
char *src1_original = src1->backend == GGML_BACKEND_TYPE_CPU
|
||
? (char *)src1->data
|
||
: (char *)src1_extra->data_device[ctx.device];
|
||
char *dst_original = dst->backend == GGML_BACKEND_TYPE_CPU
|
||
? (char *)dst->data
|
||
: (char *)dst_extra->data_device[ctx.device];
|
||
|
||
src0_row.ne[2] = 1;
|
||
src0_row.ne[3] = 1;
|
||
src0_row.nb[3] = nb02;
|
||
|
||
src1_row.ne[1] = 1;
|
||
src1_row.ne[2] = 1;
|
||
src1_row.ne[3] = 1;
|
||
src1_row.nb[2] = nb11;
|
||
src1_row.nb[3] = nb11;
|
||
|
||
dst_row.ne[1] = 1;
|
||
dst_row.ne[2] = 1;
|
||
dst_row.ne[3] = 1;
|
||
dst_row.nb[2] = nb1;
|
||
dst_row.nb[3] = nb1;
|
||
if (ne12 == 1) {
|
||
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
|
||
for (int64_t id = 0; id < n_ids; id++) {
|
||
const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
|
||
GGML_ASSERT(i02 >= 0 && i02 < n_as);
|
||
|
||
const int64_t i11 = id % ne11;
|
||
const int64_t i12 = iid1;
|
||
|
||
const int64_t i1 = id;
|
||
const int64_t i2 = i12;
|
||
|
||
src0_row_extra.data_device[ctx.device] =
|
||
src0_original + i02*nb02;
|
||
src1_row_extra.data_device[ctx.device] =
|
||
src1_original + + i11*nb11 + i12*nb12;
|
||
dst_row_extra.data_device[ctx.device] =
|
||
dst_original + i1*nb1 + i2*nb2;
|
||
|
||
ggml_sycl_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
|
||
}
|
||
}
|
||
} else {
|
||
ggml_sycl_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
|
||
ggml_sycl_pool_alloc<char> dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
|
||
|
||
src1_row_extra.data_device[ctx.device] = src1_contiguous.get();
|
||
dst_row_extra.data_device[ctx.device] = dst_contiguous.get();
|
||
|
||
for (int64_t i02 = 0; i02 < n_as; i02++) {
|
||
int64_t num_src1_rows = 0;
|
||
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
|
||
for (int64_t id = 0; id < n_ids; id++) {
|
||
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
|
||
|
||
GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);
|
||
|
||
if (row_id_i != i02) {
|
||
continue;
|
||
}
|
||
|
||
num_src1_rows++;
|
||
}
|
||
}
|
||
|
||
if (num_src1_rows == 0) {
|
||
continue;
|
||
}
|
||
|
||
|
||
ggml_sycl_pool_alloc<int> dev_cur_src1_row(ctx.pool(), 1);
|
||
ggml_sycl_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool(), num_src1_rows);
|
||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||
stream->memset(dev_cur_src1_row.get(), 0, sizeof(int))));
|
||
|
||
{
|
||
sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne10, 768u));
|
||
sycl::range<3> grid_dims(1, n_ids, ids->ne[1]);
|
||
stream->submit([&](sycl::handler &cgh) {
|
||
sycl::local_accessor<int, 0> src1_row_acc(cgh);
|
||
|
||
char *__restrict src1_contiguous_get =
|
||
src1_contiguous.get();
|
||
int *__restrict dev_cur_src1_row_get =
|
||
dev_cur_src1_row.get();
|
||
mmid_row_mapping *__restrict dev_row_mapping_get =
|
||
dev_row_mapping.get();
|
||
size_t ids_nb_ct6 = ids->nb[1];
|
||
size_t ids_nb_ct7 = ids->nb[0];
|
||
|
||
cgh.parallel_for(
|
||
sycl::nd_range<3>(grid_dims * block_dims, block_dims),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
k_copy_src1_to_contiguous(
|
||
src1_original, src1_contiguous_get,
|
||
dev_cur_src1_row_get,
|
||
dev_row_mapping_get, ids_dev, i02,
|
||
ids_nb_ct6, ids_nb_ct7, ne11, ne10, nb11, nb12,
|
||
item_ct1, src1_row_acc);
|
||
});
|
||
});
|
||
}
|
||
|
||
src0_row_extra.data_device[ctx.device] = src0_original + i02*nb02;
|
||
|
||
GGML_ASSERT(nb11 == sizeof(float)*ne10);
|
||
GGML_ASSERT(nb1 == sizeof(float)*ne0);
|
||
src1_row.ne[1] = num_src1_rows;
|
||
|
||
src1_row.nb[1] = nb11;
|
||
src1_row.nb[2] = num_src1_rows*nb11;
|
||
src1_row.nb[3] = num_src1_rows*nb11;
|
||
|
||
dst_row.ne[1] = num_src1_rows;
|
||
dst_row.nb[1] = nb1;
|
||
dst_row.nb[2] = num_src1_rows*nb1;
|
||
dst_row.nb[3] = num_src1_rows*nb1;
|
||
|
||
ggml_sycl_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
|
||
|
||
{
|
||
sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne0, 768u));
|
||
sycl::range<3> grid_dims(1, 1, num_src1_rows);
|
||
stream->submit([&](sycl::handler &cgh) {
|
||
const char *__restrict dst_contiguous_get =
|
||
dst_contiguous.get();
|
||
const mmid_row_mapping *__restrict dev_row_mapping_get =
|
||
dev_row_mapping.get();
|
||
|
||
cgh.parallel_for(
|
||
sycl::nd_range<3>(grid_dims * block_dims, block_dims),
|
||
[=](sycl::nd_item<3> item_ct1) {
|
||
k_copy_dst_from_contiguous(dst_original,
|
||
dst_contiguous_get,
|
||
dev_row_mapping_get,
|
||
ne0, nb1, nb2, item_ct1);
|
||
});
|
||
});
|
||
}
|
||
}
|
||
}
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
static void ggml_sycl_scale(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_scale);
|
||
}
|
||
|
||
static void ggml_sycl_clamp(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_clamp);
|
||
}
|
||
|
||
static void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
|
||
ggml_tensor *dst) try {
|
||
const int64_t ne = ggml_nelements(src0);
|
||
GGML_ASSERT(ne == ggml_nelements(src1));
|
||
|
||
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
|
||
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
|
||
|
||
GGML_TENSOR_BINARY_OP_LOCALS01;
|
||
|
||
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
|
||
queue_ptr main_stream = ctx.stream();
|
||
|
||
char * src0_ddc = (char *) src0->data;
|
||
char * src1_ddc = (char *) src1->data;
|
||
|
||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
||
ggml_cpy_f32_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
||
ggml_cpy_f32_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
|
||
ggml_cpy_f32_q8_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
|
||
ggml_cpy_f32_q4_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
|
||
ggml_cpy_f32_q4_1_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
|
||
ggml_cpy_f16_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
|
||
ggml_cpy_f16_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||
} else if (src0->type == GGML_TYPE_I16 && src1->type == GGML_TYPE_I16) {
|
||
ggml_cpy_i16_i16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
|
||
ggml_cpy_i32_i32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||
} else {
|
||
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
|
||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||
GGML_ASSERT(false);
|
||
}
|
||
|
||
(void) dst;
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
static void ggml_sycl_dup(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
// TODO: why do we pass dst as src1 here?
|
||
ggml_sycl_cpy(ctx, src0, dst, nullptr);
|
||
(void) src1;
|
||
}
|
||
|
||
static void ggml_sycl_diag_mask_inf(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_diag_mask_inf);
|
||
}
|
||
|
||
static void ggml_sycl_soft_max(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_soft_max);
|
||
}
|
||
|
||
static void ggml_sycl_rope(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_rope);
|
||
}
|
||
|
||
static void ggml_sycl_pool2d(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_pool2d);
|
||
}
|
||
|
||
static void ggml_sycl_im2col(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_im2col);
|
||
}
|
||
|
||
static void ggml_sycl_sum_rows(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_sum_rows);
|
||
}
|
||
|
||
static void ggml_sycl_argsort(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||
ggml_sycl_op_flatten(ctx, src0, src1, dst, ggml_sycl_op_argsort);
|
||
}
|
||
|
||
static void ggml_sycl_nop(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||
(void) src0;
|
||
(void) src1;
|
||
(void) dst;
|
||
}
|
||
|
||
static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
|
||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||
|
||
return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
|
||
}
|
||
|
||
void ggml_sycl_set_main_device(const int main_device) try {
|
||
if (dpct::get_current_device_id() == main_device) return;
|
||
check_allow_gpu_index(main_device);
|
||
dpct::select_device(main_device);
|
||
|
||
if (g_ggml_sycl_debug) {
|
||
dpct::device_info prop;
|
||
SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
|
||
prop, dpct::dev_mgr::instance().get_device(main_device))));
|
||
fprintf(stderr, "Using device %d (%s) as main device\n",
|
||
main_device, prop.get_name());
|
||
}
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tensor * tensor) {
|
||
if (!g_sycl_loaded) return false;
|
||
|
||
ggml_sycl_func_t func;
|
||
|
||
switch (tensor->op) {
|
||
case GGML_OP_REPEAT:
|
||
func = ggml_sycl_repeat;
|
||
break;
|
||
case GGML_OP_GET_ROWS:
|
||
func = ggml_sycl_get_rows;
|
||
break;
|
||
case GGML_OP_DUP:
|
||
func = ggml_sycl_dup;
|
||
break;
|
||
case GGML_OP_ADD:
|
||
func = ggml_sycl_add;
|
||
break;
|
||
case GGML_OP_ACC:
|
||
func = ggml_sycl_acc;
|
||
break;
|
||
case GGML_OP_MUL:
|
||
func = ggml_sycl_mul;
|
||
break;
|
||
case GGML_OP_DIV:
|
||
func = ggml_sycl_div;
|
||
break;
|
||
case GGML_OP_UNARY:
|
||
switch (ggml_get_unary_op(tensor)) {
|
||
case GGML_UNARY_OP_GELU:
|
||
func = ggml_sycl_gelu;
|
||
break;
|
||
case GGML_UNARY_OP_SILU:
|
||
func = ggml_sycl_silu;
|
||
break;
|
||
case GGML_UNARY_OP_GELU_QUICK:
|
||
func = ggml_sycl_gelu_quick;
|
||
break;
|
||
case GGML_UNARY_OP_TANH:
|
||
func = ggml_sycl_tanh;
|
||
break;
|
||
case GGML_UNARY_OP_RELU:
|
||
func = ggml_sycl_relu;
|
||
break;
|
||
case GGML_UNARY_OP_HARDSIGMOID:
|
||
func = ggml_sycl_hardsigmoid;
|
||
break;
|
||
case GGML_UNARY_OP_HARDSWISH:
|
||
func = ggml_sycl_hardswish;
|
||
break;
|
||
default:
|
||
return false;
|
||
}
|
||
break;
|
||
case GGML_OP_NORM:
|
||
func = ggml_sycl_norm;
|
||
break;
|
||
case GGML_OP_GROUP_NORM:
|
||
func = ggml_sycl_group_norm;
|
||
break;
|
||
case GGML_OP_CONCAT:
|
||
func = ggml_sycl_concat;
|
||
break;
|
||
case GGML_OP_UPSCALE:
|
||
func = ggml_sycl_upscale;
|
||
break;
|
||
case GGML_OP_PAD:
|
||
func = ggml_sycl_pad;
|
||
break;
|
||
case GGML_OP_LEAKY_RELU:
|
||
func = ggml_sycl_leaky_relu;
|
||
break;
|
||
case GGML_OP_RMS_NORM:
|
||
func = ggml_sycl_rms_norm;
|
||
break;
|
||
case GGML_OP_MUL_MAT:
|
||
if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
|
||
return false;
|
||
}
|
||
func = ggml_sycl_mul_mat;
|
||
break;
|
||
case GGML_OP_MUL_MAT_ID:
|
||
if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
|
||
return false;
|
||
}
|
||
func = ggml_sycl_mul_mat_id;
|
||
break;
|
||
case GGML_OP_SCALE:
|
||
func = ggml_sycl_scale;
|
||
break;
|
||
case GGML_OP_SQR:
|
||
func = ggml_sycl_sqr;
|
||
break;
|
||
case GGML_OP_CLAMP:
|
||
func = ggml_sycl_clamp;
|
||
break;
|
||
case GGML_OP_CPY:
|
||
func = ggml_sycl_cpy;
|
||
break;
|
||
case GGML_OP_CONT:
|
||
func = ggml_sycl_dup;
|
||
break;
|
||
case GGML_OP_NONE:
|
||
case GGML_OP_RESHAPE:
|
||
case GGML_OP_VIEW:
|
||
case GGML_OP_PERMUTE:
|
||
case GGML_OP_TRANSPOSE:
|
||
func = ggml_sycl_nop;
|
||
break;
|
||
case GGML_OP_DIAG_MASK_INF:
|
||
func = ggml_sycl_diag_mask_inf;
|
||
break;
|
||
case GGML_OP_SOFT_MAX:
|
||
func = ggml_sycl_soft_max;
|
||
break;
|
||
case GGML_OP_ROPE:
|
||
func = ggml_sycl_rope;
|
||
break;
|
||
case GGML_OP_IM2COL:
|
||
func = ggml_sycl_im2col;
|
||
break;
|
||
case GGML_OP_POOL_2D:
|
||
func = ggml_sycl_pool2d;
|
||
break;
|
||
case GGML_OP_SUM_ROWS:
|
||
func = ggml_sycl_sum_rows;
|
||
break;
|
||
case GGML_OP_ARGSORT:
|
||
func = ggml_sycl_argsort;
|
||
break;
|
||
default:
|
||
return false;
|
||
}
|
||
|
||
if (tensor->src[0] != nullptr && ggml_backend_buffer_is_sycl_split(tensor->src[0]->buffer)) {
|
||
ggml_sycl_set_peer_access(tensor->src[1]->ne[1], ctx.device);
|
||
}
|
||
|
||
func(ctx, tensor->src[0], tensor->src[1], tensor);
|
||
return true;
|
||
}
|
||
|
||
GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len) try {
|
||
GGML_SYCL_DEBUG("[SYCL] call ggml_sycl_get_gpu_list\n");
|
||
for(int i=0;i<max_len;i++) id_list[i] = -1;
|
||
|
||
for (int i=0;i< ggml_sycl_info().device_count;i++){
|
||
if (i>=max_len) break;
|
||
id_list[i] = i;
|
||
}
|
||
return;
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
int ggml_sycl_get_device_count() try {
|
||
int device_count;
|
||
if (CHECK_TRY_ERROR(device_count =
|
||
dpct::dev_mgr::instance().device_count()) != 0) {
|
||
return 0;
|
||
}
|
||
return device_count;
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description,
|
||
size_t description_size) try {
|
||
GGML_SYCL_DEBUG("[SYCL] call ggml_sycl_get_device_description\n");
|
||
dpct::device_info prop;
|
||
SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
|
||
prop, dpct::dev_mgr::instance().get_device(device))));
|
||
snprintf(description, description_size, "%s", prop.get_name());
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free,
|
||
size_t *total) try {
|
||
GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_memory\n");
|
||
ggml_sycl_set_device(device);
|
||
|
||
/*
|
||
DPCT1009:218: SYCL uses exceptions to report errors and does not use the
|
||
error codes. The original code was commented out and a warning string was
|
||
inserted. You need to rewrite this code.
|
||
*/
|
||
/*
|
||
DPCT1106:217: 'cudaMemGetInfo' was migrated with the Intel extensions for
|
||
device information which may not be supported by all compilers or runtimes.
|
||
You may need to adjust the code.
|
||
*/
|
||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||
dpct::dev_mgr::instance().get_device(device).get_memory_info(*free, *total)));
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
// backend interface
|
||
|
||
#define UNUSED GGML_UNUSED
|
||
|
||
// sycl buffer
|
||
|
||
struct ggml_backend_sycl_buffer_context {
|
||
int device;
|
||
void * dev_ptr = nullptr;
|
||
queue_ptr stream;
|
||
std::string name;
|
||
|
||
ggml_backend_sycl_buffer_context(int device, void * dev_ptr, queue_ptr stream) :
|
||
device(device), dev_ptr(dev_ptr), stream(stream) {
|
||
check_allow_gpu_index(device);
|
||
name = (GGML_SYCL_NAME + std::to_string(device));
|
||
}
|
||
|
||
|
||
~ggml_backend_sycl_buffer_context() {
|
||
if (dev_ptr != nullptr) {
|
||
ggml_sycl_set_device(device);
|
||
SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(dev_ptr, *stream)));
|
||
}
|
||
}
|
||
};
|
||
|
||
GGML_CALL static const char * ggml_backend_sycl_buffer_get_name(ggml_backend_buffer_t buffer) {
|
||
ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
|
||
return ctx->name.c_str();
|
||
}
|
||
|
||
GGML_CALL static bool ggml_backend_buffer_is_sycl(ggml_backend_buffer_t buffer) {
|
||
return buffer->iface.get_name == ggml_backend_sycl_buffer_get_name;
|
||
}
|
||
|
||
static void
|
||
ggml_backend_sycl_buffer_free_buffer(ggml_backend_buffer_t buffer) try {
|
||
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
|
||
ggml_sycl_set_device(ctx->device);
|
||
|
||
delete ctx;
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
static void * ggml_backend_sycl_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
|
||
return ctx->dev_ptr;
|
||
}
|
||
|
||
GGML_CALL static void
|
||
ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
|
||
ggml_tensor *tensor) try {
|
||
ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
|
||
|
||
if (tensor->view_src != NULL && tensor->view_offs == 0) {
|
||
assert(tensor->view_src->buffer->buft == buffer->buft);
|
||
tensor->backend = tensor->view_src->backend;
|
||
tensor->extra = tensor->view_src->extra;
|
||
return;
|
||
}
|
||
|
||
|
||
if (ggml_is_quantized(tensor->type)) {
|
||
// initialize padding to 0 to avoid possible NaN values
|
||
size_t original_size = ggml_nbytes(tensor);
|
||
size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
|
||
|
||
if (padded_size > original_size && tensor->view_src == nullptr) {
|
||
SYCL_CHECK(CHECK_TRY_ERROR(ctx->stream->memset(
|
||
(char *)tensor->data + original_size, 0,
|
||
padded_size - original_size).wait()));
|
||
}
|
||
}
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
static void ggml_backend_sycl_buffer_set_tensor(ggml_backend_buffer_t buffer,
|
||
ggml_tensor *tensor,
|
||
const void *data, size_t offset,
|
||
size_t size) try {
|
||
|
||
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
|
||
|
||
ggml_sycl_set_device(ctx->device);
|
||
auto stream = &(dpct::dev_mgr::instance().get_device(ctx->device).default_queue());
|
||
SYCL_CHECK(
|
||
CHECK_TRY_ERROR(dpct::dev_mgr::instance().get_device(ctx->device).queues_wait_and_throw()));
|
||
char* host_buf = (char*)malloc(size);
|
||
memcpy(host_buf, data, size);
|
||
SYCL_CHECK(
|
||
CHECK_TRY_ERROR((*stream).memcpy((char *)tensor->data + offset, host_buf, size)
|
||
.wait()));
|
||
free(host_buf);
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
static void ggml_backend_sycl_buffer_get_tensor(ggml_backend_buffer_t buffer,
|
||
const ggml_tensor *tensor,
|
||
void *data, size_t offset,
|
||
size_t size) try {
|
||
|
||
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
|
||
|
||
ggml_sycl_set_device(ctx->device);
|
||
auto stream = dpct::dev_mgr::instance().get_device(ctx->device).default_queue();
|
||
|
||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||
stream.memcpy(data, (const char *)tensor->data + offset, size)
|
||
.wait()));
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
GGML_CALL static bool
|
||
ggml_backend_sycl_buffer_cpy_tensor(ggml_backend_buffer_t buffer,
|
||
const ggml_tensor *src,
|
||
ggml_tensor *dst) try {
|
||
if (ggml_backend_buffer_is_sycl(src->buffer)) {
|
||
ggml_backend_sycl_buffer_context * src_ctx = (ggml_backend_sycl_buffer_context *)src->buffer->context;
|
||
ggml_backend_sycl_buffer_context * dst_ctx = (ggml_backend_sycl_buffer_context *)dst->buffer->context;
|
||
|
||
ggml_sycl_set_device(src_ctx->device);
|
||
/*
|
||
DPCT1009:198: SYCL uses exceptions to report errors and does not use the
|
||
error codes. The original code was commented out and a warning string
|
||
was inserted. You need to rewrite this code.
|
||
*/
|
||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||
dpct::dev_mgr::instance().get_device(src_ctx->device).queues_wait_and_throw()));
|
||
ggml_sycl_set_device(dst_ctx->device);
|
||
/*
|
||
DPCT1009:199: SYCL uses exceptions to report errors and does not use the
|
||
error codes. The original code was commented out and a warning string
|
||
was inserted. You need to rewrite this code.
|
||
*/
|
||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||
dpct::dev_mgr::instance().get_device(dst_ctx->device).queues_wait_and_throw()));
|
||
/*
|
||
DPCT1009:200: SYCL uses exceptions to report errors and does not use the
|
||
error codes. The original code was commented out and a warning string
|
||
was inserted. You need to rewrite this code.
|
||
*/
|
||
|
||
queue_ptr stream_dst = dst_ctx->stream;
|
||
queue_ptr stream_src = src_ctx->stream;
|
||
size_t size = ggml_nbytes(src);
|
||
|
||
//todo. it's dirty solutino to walkaroud known issue:device2device cross GPUs.
|
||
dev2dev_memcpy(*stream_dst, *stream_src, dst->data, src->data, size);
|
||
|
||
//todo, it's known issue:error in device2device cross GPUs. reused when the issue is fixed. DON"T remove
|
||
#if 0
|
||
SYCL_CHECK(CHECK_TRY_ERROR((*stream).memcpy(
|
||
(char *)dst->data, (const char *)src->data, size).wait()));
|
||
|
||
/*
|
||
DPCT1009:201: SYCL uses exceptions to report errors and does not use the
|
||
error codes. The original code was commented out and a warning string
|
||
was inserted. You need to rewrite this code.
|
||
*/
|
||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||
dpct::dev_mgr::instance().get_device(dst_ctx->device).queues_wait_and_throw()));
|
||
#endif
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
|
||
static void ggml_backend_sycl_buffer_clear(ggml_backend_buffer_t buffer,
|
||
uint8_t value) try {
|
||
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
|
||
|
||
ggml_sycl_set_device(ctx->device);
|
||
queue_ptr stream = ctx->stream;
|
||
SYCL_CHECK(
|
||
CHECK_TRY_ERROR(dpct::get_current_device().queues_wait_and_throw()));
|
||
|
||
SYCL_CHECK(CHECK_TRY_ERROR((*stream)
|
||
.memset(ctx->dev_ptr, value, buffer->size)
|
||
.wait()));
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
static struct ggml_backend_buffer_i ggml_backend_sycl_buffer_interface = {
|
||
/* .get_name = */ ggml_backend_sycl_buffer_get_name,
|
||
/* .free_buffer = */ ggml_backend_sycl_buffer_free_buffer,
|
||
/* .get_base = */ ggml_backend_sycl_buffer_get_base,
|
||
/* .init_tensor = */ ggml_backend_sycl_buffer_init_tensor,
|
||
/* .set_tensor = */ ggml_backend_sycl_buffer_set_tensor,
|
||
/* .get_tensor = */ ggml_backend_sycl_buffer_get_tensor,
|
||
/* .cpy_tensor = */ ggml_backend_sycl_buffer_cpy_tensor,
|
||
/* .clear = */ ggml_backend_sycl_buffer_clear,
|
||
/* .reset = */ NULL,
|
||
};
|
||
|
||
// sycl buffer type
|
||
struct ggml_backend_sycl_buffer_type_context {
|
||
int device;
|
||
std::string name;
|
||
|
||
// each buffer type has its own stream
|
||
queue_ptr stream = nullptr;
|
||
};
|
||
|
||
GGML_CALL static const char * ggml_backend_sycl_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||
ggml_backend_sycl_buffer_type_context * ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
|
||
|
||
return ctx->name.c_str();
|
||
}
|
||
GGML_CALL static ggml_backend_buffer_t
|
||
ggml_backend_sycl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
|
||
size_t size) try {
|
||
ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
|
||
ggml_sycl_set_device(buft_ctx->device);
|
||
const queue_ptr stream = buft_ctx->stream;
|
||
size = std::max(size, (size_t)1); // syclMalloc returns null for size 0
|
||
|
||
void * dev_ptr;
|
||
SYCL_CHECK(CHECK_TRY_ERROR(dev_ptr = (void *)sycl::malloc_device(
|
||
size, *stream)));
|
||
ggml_backend_sycl_buffer_context * ctx = new ggml_backend_sycl_buffer_context(buft_ctx->device, dev_ptr, buft_ctx->stream);
|
||
return ggml_backend_buffer_init(buft, ggml_backend_sycl_buffer_interface, ctx, size);
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
GGML_CALL static size_t ggml_backend_sycl_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||
return 128;
|
||
UNUSED(buft);
|
||
}
|
||
|
||
static size_t ggml_backend_sycl_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
|
||
return dpct::get_current_device().get_max_mem_alloc_size();
|
||
|
||
UNUSED(buft);
|
||
}
|
||
|
||
GGML_CALL static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
||
size_t size = ggml_nbytes(tensor);
|
||
int64_t ne0 = tensor->ne[0];
|
||
|
||
if (ggml_is_quantized(tensor->type)) {
|
||
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
||
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
|
||
}
|
||
}
|
||
|
||
return size;
|
||
|
||
UNUSED(buft);
|
||
}
|
||
|
||
static ggml_backend_buffer_type_i ggml_backend_sycl_buffer_type_interface = {
|
||
/* .get_name = */ ggml_backend_sycl_buffer_type_name,
|
||
/* .alloc_buffer = */ ggml_backend_sycl_buffer_type_alloc_buffer,
|
||
/* .get_alignment = */ ggml_backend_sycl_buffer_type_get_alignment,
|
||
/* .get_max_size = */ ggml_backend_sycl_buffer_type_get_max_size,
|
||
/* .get_alloc_size = */ ggml_backend_sycl_buffer_type_get_alloc_size,
|
||
/* .is_host = */ nullptr,
|
||
};
|
||
|
||
ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device) {
|
||
static std::mutex mutex;
|
||
std::lock_guard<std::mutex> lock(mutex);
|
||
|
||
GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_buffer_type\n");
|
||
|
||
if (device>=ggml_sycl_info().device_count or device<0) {
|
||
printf("ggml_backend_sycl_buffer_type error: device_index:%d is out of range [0, %d], miss to call ggml_backend_sycl_set_single_device()\n",
|
||
device, ggml_sycl_info().device_count-1);
|
||
GGML_ASSERT(device<ggml_sycl_info().device_count);
|
||
}
|
||
static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_types[GGML_SYCL_MAX_DEVICES];
|
||
|
||
static bool ggml_backend_sycl_buffer_type_initialized = false;
|
||
|
||
if (!ggml_backend_sycl_buffer_type_initialized) {
|
||
for (int i = 0; i < ggml_sycl_info().device_count; i++) {
|
||
auto & device_i = dpct::dev_mgr::instance().get_device(i);
|
||
queue_ptr stream = &(device_i.default_queue());
|
||
ggml_backend_sycl_buffer_types[i] = {
|
||
/* .iface = */ ggml_backend_sycl_buffer_type_interface,
|
||
/* .context = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(i), stream},
|
||
};
|
||
}
|
||
ggml_backend_sycl_buffer_type_initialized = true;
|
||
}
|
||
return &ggml_backend_sycl_buffer_types[device];
|
||
}
|
||
|
||
ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(ggml_backend_sycl_context * ctx) {
|
||
GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_buffer_type\n");
|
||
|
||
int device = ctx->device;
|
||
if (device>=ggml_sycl_info().device_count or device<0) {
|
||
printf("ggml_backend_sycl_buffer_type error: device_index:%d is out of range [0, %d], miss to call ggml_backend_sycl_set_single_device()\n",
|
||
device, ggml_sycl_info().device_count-1);
|
||
GGML_ASSERT(device<ggml_sycl_info().device_count);
|
||
}
|
||
static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_types[GGML_SYCL_MAX_DEVICES];
|
||
|
||
static bool ggml_backend_sycl_buffer_type_initialized = false;
|
||
|
||
if (!ggml_backend_sycl_buffer_type_initialized) {
|
||
for (int i = 0; i < ggml_sycl_info().device_count; i++) {
|
||
ggml_backend_sycl_buffer_types[i] = {
|
||
/* .iface = */ ggml_backend_sycl_buffer_type_interface,
|
||
/* .context = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(i), ctx->stream(i, 0)},
|
||
};
|
||
}
|
||
ggml_backend_sycl_buffer_type_initialized = true;
|
||
}
|
||
return &ggml_backend_sycl_buffer_types[device];
|
||
}
|
||
|
||
// sycl split buffer type
|
||
static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_SYCL_MAX_DEVICES> & tensor_split, int id) {
|
||
const int64_t nrows = ggml_nrows(tensor);
|
||
const int64_t rounding = get_row_rounding(tensor->type, tensor_split);
|
||
|
||
*row_low = id == 0 ? 0 : nrows*tensor_split[id];
|
||
*row_low -= *row_low % rounding;
|
||
if (id == ggml_sycl_info().device_count - 1) {
|
||
*row_high = nrows;
|
||
} else {
|
||
*row_high = nrows*tensor_split[id + 1];
|
||
*row_high -= *row_high % rounding;
|
||
}
|
||
}
|
||
|
||
struct ggml_backend_sycl_split_buffer_context {
|
||
~ggml_backend_sycl_split_buffer_context() try {
|
||
for (ggml_tensor_extra_gpu * extra : tensor_extras) {
|
||
for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
|
||
for (int64_t is = 0; is < GGML_SYCL_MAX_STREAMS; ++is) {
|
||
if (extra->events[i][is] != nullptr) {
|
||
/*
|
||
DPCT1009:206: SYCL uses exceptions to report errors and
|
||
does not use the error codes. The original code was
|
||
commented out and a warning string was inserted. You
|
||
need to rewrite this code.
|
||
*/
|
||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||
dpct::destroy_event(extra->events[i][is])));
|
||
}
|
||
}
|
||
if (extra->data_device[i] != nullptr) {
|
||
/*
|
||
DPCT1009:207: SYCL uses exceptions to report errors and does
|
||
not use the error codes. The original code was commented out
|
||
and a warning string was inserted. You need to rewrite this
|
||
code.
|
||
*/
|
||
ggml_sycl_set_device(i);
|
||
SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(
|
||
extra->data_device[i], *(streams[i]))));
|
||
}
|
||
}
|
||
delete extra;
|
||
}
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
std::vector<ggml_tensor_extra_gpu *> tensor_extras;
|
||
std::vector<queue_ptr> streams;
|
||
};
|
||
|
||
GGML_CALL static const char * ggml_backend_sycl_split_buffer_get_name(ggml_backend_buffer_t buffer) {
|
||
return GGML_SYCL_NAME "_Split";
|
||
|
||
UNUSED(buffer);
|
||
}
|
||
|
||
static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer) {
|
||
return buffer->iface.get_name == ggml_backend_sycl_split_buffer_get_name;
|
||
}
|
||
|
||
GGML_CALL static void ggml_backend_sycl_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||
ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
|
||
delete ctx;
|
||
}
|
||
|
||
GGML_CALL static void * ggml_backend_sycl_split_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||
// the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
|
||
return (void *)0x1000;
|
||
|
||
UNUSED(buffer);
|
||
}
|
||
|
||
GGML_CALL static void
|
||
ggml_backend_sycl_split_buffer_init_tensor(ggml_backend_buffer_t buffer,
|
||
ggml_tensor *tensor) try {
|
||
GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
|
||
|
||
ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
|
||
ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *)buffer->buft->context;
|
||
|
||
const int64_t ne0 = tensor->ne[0];
|
||
|
||
ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
|
||
|
||
ctx->tensor_extras.push_back(extra);
|
||
ctx->streams.push_back(&(dpct::get_current_device().default_queue()));
|
||
|
||
for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
|
||
int64_t row_low, row_high;
|
||
get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, i);
|
||
|
||
int64_t nrows_split = row_high - row_low;
|
||
if (nrows_split == 0) {
|
||
continue;
|
||
}
|
||
|
||
size_t size = ggml_nbytes_split(tensor, nrows_split);
|
||
const size_t original_size = size;
|
||
|
||
// pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
|
||
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
||
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
|
||
}
|
||
|
||
// FIXME: do not crash if cudaMalloc fails
|
||
// currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
|
||
ggml_sycl_set_device(i);
|
||
const queue_ptr stream = ctx->streams[i];
|
||
char * buf;
|
||
/*
|
||
DPCT1009:208: SYCL uses exceptions to report errors and does not use the
|
||
error codes. The original code was commented out and a warning string
|
||
was inserted. You need to rewrite this code.
|
||
*/
|
||
SYCL_CHECK(CHECK_TRY_ERROR(buf = (char *)sycl::malloc_device(
|
||
size, *stream)));
|
||
|
||
// set padding to 0 to avoid possible NaN values
|
||
if (size > original_size) {
|
||
/*
|
||
DPCT1009:209: SYCL uses exceptions to report errors and does not use
|
||
the error codes. The original code was commented out and a warning
|
||
string was inserted. You need to rewrite this code.
|
||
*/
|
||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||
(*stream)
|
||
.memset(buf + original_size, 0, size - original_size)
|
||
.wait()));
|
||
}
|
||
|
||
extra->data_device[i] = buf;
|
||
|
||
for (int64_t is = 0; is < GGML_SYCL_MAX_STREAMS; ++is) {
|
||
/*
|
||
DPCT1009:210: SYCL uses exceptions to report errors and does not use
|
||
the error codes. The original code was commented out and a warning
|
||
string was inserted. You need to rewrite this code.
|
||
*/
|
||
SYCL_CHECK(
|
||
CHECK_TRY_ERROR(extra->events[i][is] = new sycl::event()));
|
||
}
|
||
}
|
||
tensor->backend = GGML_BACKEND_TYPE_GPU_SPLIT;
|
||
tensor->extra = extra;
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
GGML_CALL static void
|
||
ggml_backend_sycl_split_buffer_set_tensor(ggml_backend_buffer_t buffer,
|
||
ggml_tensor *tensor, const void *data,
|
||
size_t offset, size_t size) try {
|
||
// split tensors must always be set in their entirety at once
|
||
GGML_ASSERT(offset == 0);
|
||
GGML_ASSERT(size == ggml_nbytes(tensor));
|
||
|
||
ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
|
||
ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *)buffer->buft->context;
|
||
|
||
const int64_t ne0 = tensor->ne[0];
|
||
const size_t nb1 = tensor->nb[1];
|
||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
|
||
|
||
for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
|
||
int64_t row_low, row_high;
|
||
get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, i);
|
||
|
||
int64_t nrows_split = row_high - row_low;
|
||
if (nrows_split == 0) {
|
||
continue;
|
||
}
|
||
|
||
const size_t offset_split = row_low*nb1;
|
||
size_t size = ggml_nbytes_split(tensor, nrows_split);
|
||
const size_t original_size = size;
|
||
|
||
// pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
|
||
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
||
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
|
||
}
|
||
|
||
const char * buf_host = (const char *)data + offset_split;
|
||
/*
|
||
DPCT1009:211: SYCL uses exceptions to report errors and does not use the
|
||
error codes. The original code was commented out and a warning string
|
||
was inserted. You need to rewrite this code.
|
||
*/
|
||
ggml_sycl_set_device(i);
|
||
const queue_ptr stream = ctx->streams[i];
|
||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||
(*stream)
|
||
.memcpy(extra->data_device[i], buf_host, original_size)
|
||
.wait()));
|
||
}
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
GGML_CALL static void
|
||
ggml_backend_sycl_split_buffer_get_tensor(ggml_backend_buffer_t buffer,
|
||
const ggml_tensor *tensor, void *data,
|
||
size_t offset, size_t size) try {
|
||
// split tensors must always be set in their entirety at once
|
||
GGML_ASSERT(offset == 0);
|
||
GGML_ASSERT(size == ggml_nbytes(tensor));
|
||
|
||
ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
|
||
ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *)buffer->buft->context;
|
||
|
||
const int64_t ne0 = tensor->ne[0];
|
||
const size_t nb1 = tensor->nb[1];
|
||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
|
||
|
||
for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
|
||
int64_t row_low, row_high;
|
||
get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, i);
|
||
|
||
int64_t nrows_split = row_high - row_low;
|
||
if (nrows_split == 0) {
|
||
continue;
|
||
}
|
||
|
||
const size_t offset_split = row_low*nb1;
|
||
size_t size = ggml_nbytes_split(tensor, nrows_split);
|
||
const size_t original_size = size;
|
||
|
||
// pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
|
||
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
||
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
|
||
}
|
||
|
||
char * buf_host = (char *)data + offset_split;
|
||
/*
|
||
DPCT1009:212: SYCL uses exceptions to report errors and does not use the
|
||
error codes. The original code was commented out and a warning string
|
||
was inserted. You need to rewrite this code.
|
||
*/
|
||
ggml_sycl_set_device(i);
|
||
const queue_ptr stream = ctx->streams[i];
|
||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||
(*stream)
|
||
.memcpy(buf_host, extra->data_device[i], original_size)
|
||
.wait()));
|
||
}
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
GGML_CALL static void ggml_backend_sycl_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||
UNUSED(buffer);
|
||
UNUSED(value);
|
||
}
|
||
|
||
static struct ggml_backend_buffer_i ggml_backend_sycl_split_buffer_interface = {
|
||
/* .get_name = */ ggml_backend_sycl_split_buffer_get_name,
|
||
/* .free_buffer = */ ggml_backend_sycl_split_buffer_free_buffer,
|
||
/* .get_base = */ ggml_backend_sycl_split_buffer_get_base,
|
||
/* .init_tensor = */ ggml_backend_sycl_split_buffer_init_tensor,
|
||
/* .set_tensor = */ ggml_backend_sycl_split_buffer_set_tensor,
|
||
/* .get_tensor = */ ggml_backend_sycl_split_buffer_get_tensor,
|
||
/* .cpy_tensor = */ NULL,
|
||
/* .clear = */ ggml_backend_sycl_split_buffer_clear,
|
||
/* .reset = */ NULL,
|
||
};
|
||
|
||
GGML_CALL static const char * ggml_backend_sycl_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||
return GGML_SYCL_NAME "_Split";
|
||
|
||
UNUSED(buft);
|
||
}
|
||
|
||
GGML_CALL static ggml_backend_buffer_t ggml_backend_sycl_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||
// since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
|
||
// instead, we allocate them for each tensor separately in init_tensor
|
||
// however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
|
||
// as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
|
||
ggml_backend_sycl_split_buffer_context * ctx = new ggml_backend_sycl_split_buffer_context();
|
||
|
||
return ggml_backend_buffer_init(buft, ggml_backend_sycl_split_buffer_interface, ctx, size);
|
||
}
|
||
|
||
GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||
return 128;
|
||
UNUSED(buft);
|
||
}
|
||
|
||
GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
||
ggml_backend_sycl_split_buffer_type_context * ctx = (ggml_backend_sycl_split_buffer_type_context *)buft->context;
|
||
|
||
size_t total_size = 0;
|
||
|
||
const int64_t ne0 = tensor->ne[0];
|
||
|
||
for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
|
||
int64_t row_low, row_high;
|
||
get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, i);
|
||
|
||
int64_t nrows_split = row_high - row_low;
|
||
if (nrows_split == 0) {
|
||
continue;
|
||
}
|
||
|
||
total_size += ggml_nbytes_split(tensor, nrows_split);
|
||
|
||
// pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
|
||
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
||
total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
|
||
}
|
||
}
|
||
|
||
return total_size;
|
||
}
|
||
|
||
GGML_CALL static bool ggml_backend_sycl_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||
return false;
|
||
|
||
UNUSED(buft);
|
||
}
|
||
|
||
static ggml_backend_buffer_type_i ggml_backend_sycl_split_buffer_type_interface = {
|
||
/* .get_name = */ ggml_backend_sycl_split_buffer_type_name,
|
||
/* .alloc_buffer = */ ggml_backend_sycl_split_buffer_type_alloc_buffer,
|
||
/* .get_alignment = */ ggml_backend_sycl_split_buffer_type_get_alignment,
|
||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||
/* .get_alloc_size = */ ggml_backend_sycl_split_buffer_type_get_alloc_size,
|
||
/* .is_host = */ ggml_backend_sycl_split_buffer_type_is_host,
|
||
};
|
||
|
||
GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split) {
|
||
static std::mutex mutex;
|
||
std::lock_guard<std::mutex> lock(mutex);
|
||
|
||
GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_split_buffer_type\n");
|
||
ggml_check_sycl();
|
||
// FIXME: this is not thread safe
|
||
static std::map<std::array<float, GGML_SYCL_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
|
||
|
||
std::array<float, GGML_SYCL_MAX_DEVICES> tensor_split_arr = {};
|
||
|
||
bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_SYCL_MAX_DEVICES, [](float x) { return x == 0.0f; });
|
||
if (all_zero) {
|
||
tensor_split_arr = ggml_sycl_info().default_tensor_split;
|
||
} else {
|
||
float split_sum = 0.0f;
|
||
for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
|
||
tensor_split_arr[i] = split_sum;
|
||
split_sum += tensor_split[i];
|
||
}
|
||
for (int i = 0; i < ggml_sycl_info().device_count; ++i) {
|
||
tensor_split_arr[i] /= split_sum;
|
||
}
|
||
}
|
||
|
||
auto it = buft_map.find(tensor_split_arr);
|
||
if (it != buft_map.end()) {
|
||
return &it->second;
|
||
}
|
||
|
||
struct ggml_backend_buffer_type buft {
|
||
/* .iface = */ ggml_backend_sycl_split_buffer_type_interface,
|
||
/* .context = */ new ggml_backend_sycl_split_buffer_type_context{tensor_split_arr},
|
||
};
|
||
|
||
auto result = buft_map.emplace(tensor_split_arr, buft);
|
||
return &result.first->second;
|
||
}
|
||
|
||
// host buffer type
|
||
|
||
GGML_CALL static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||
return GGML_SYCL_NAME "_Host";
|
||
|
||
UNUSED(buft);
|
||
}
|
||
|
||
GGML_CALL static const char * ggml_backend_sycl_host_buffer_name(ggml_backend_buffer_t buffer) {
|
||
return GGML_SYCL_NAME "_Host";
|
||
|
||
UNUSED(buffer);
|
||
}
|
||
|
||
static void ggml_backend_sycl_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||
ggml_sycl_host_free(buffer->context);
|
||
}
|
||
|
||
static ggml_backend_buffer_t ggml_backend_sycl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||
void * ptr = ggml_sycl_host_malloc(size);
|
||
|
||
if (ptr == nullptr) {
|
||
// fallback to cpu buffer
|
||
return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
|
||
}
|
||
|
||
// FIXME: this is a hack to avoid having to implement a new buffer type
|
||
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
|
||
buffer->buft = buft;
|
||
buffer->iface.get_name = ggml_backend_sycl_host_buffer_name;
|
||
buffer->iface.free_buffer = ggml_backend_sycl_host_buffer_free_buffer;
|
||
|
||
return buffer;
|
||
}
|
||
|
||
ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type() {
|
||
GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_host_buffer_type\n");
|
||
static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_type_host = {
|
||
/* .iface = */ {
|
||
/* .get_name = */ ggml_backend_sycl_host_buffer_type_name,
|
||
/* .alloc_buffer = */ ggml_backend_sycl_host_buffer_type_alloc_buffer,
|
||
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
|
||
/* .get_max_size = */ NULL, // TODO: return device.maxBufferLength
|
||
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
|
||
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
|
||
},
|
||
/* .context = */ nullptr,
|
||
};
|
||
|
||
return &ggml_backend_sycl_buffer_type_host;
|
||
}
|
||
|
||
// backend
|
||
|
||
GGML_CALL static const char * ggml_backend_sycl_name(ggml_backend_t backend) {
|
||
|
||
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
||
|
||
return sycl_ctx->name.c_str();
|
||
}
|
||
|
||
GGML_CALL static void ggml_backend_sycl_free(ggml_backend_t backend) {
|
||
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
||
|
||
delete sycl_ctx;
|
||
delete backend;
|
||
}
|
||
|
||
|
||
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_sycl_get_default_buffer_type(ggml_backend_t backend) {
|
||
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
||
return ggml_backend_sycl_buffer_type(sycl_ctx->device);
|
||
}
|
||
|
||
GGML_CALL static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend,
|
||
ggml_tensor *tensor,
|
||
const void *data, size_t offset,
|
||
size_t size) try {
|
||
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
||
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
|
||
|
||
GGML_ASSERT(buf->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
|
||
const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
|
||
SYCL_CHECK(CHECK_TRY_ERROR((stream)->memcpy(
|
||
(char *)tensor->data + offset, data, size).wait()));
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
GGML_CALL static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend,
|
||
const ggml_tensor *tensor,
|
||
void *data, size_t offset,
|
||
size_t size) try {
|
||
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
||
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
|
||
|
||
GGML_ASSERT(buf->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
|
||
const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
|
||
SYCL_CHECK(CHECK_TRY_ERROR((stream)->memcpy(
|
||
data, (const char *)tensor->data + offset, size).wait()));
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
GGML_CALL static bool ggml_backend_sycl_cpy_tensor_async(ggml_backend_t backend,
|
||
const ggml_tensor *src,
|
||
ggml_tensor *dst) try {
|
||
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
||
if (dst->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && ggml_backend_buffer_is_sycl(src->buffer)) {
|
||
/*
|
||
DPCT1009:215: SYCL uses exceptions to report errors and does not use the
|
||
error codes. The original code was commented out and a warning string
|
||
was inserted. You need to rewrite this code.
|
||
*/
|
||
const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
|
||
SYCL_CHECK(CHECK_TRY_ERROR((stream)->memcpy(
|
||
dst->data, src->data, ggml_nbytes(dst)).wait()));
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
static void ggml_backend_sycl_synchronize(ggml_backend_t backend) try {
|
||
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
||
const queue_ptr stream = sycl_ctx->stream(sycl_ctx->device, 0);
|
||
SYCL_CHECK(CHECK_TRY_ERROR((stream)->wait()));
|
||
|
||
UNUSED(backend);
|
||
}
|
||
catch (sycl::exception const &exc) {
|
||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||
<< ", line:" << __LINE__ << std::endl;
|
||
std::exit(1);
|
||
}
|
||
|
||
GGML_CALL static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
||
ggml_sycl_set_main_device(sycl_ctx->device);
|
||
|
||
|
||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||
ggml_tensor * node = cgraph->nodes[i];
|
||
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
|
||
continue;
|
||
}
|
||
#ifndef NDEBUG
|
||
assert(node->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
|
||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||
if (node->src[j] != nullptr) {
|
||
assert(node->src[j]->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
|
||
}
|
||
}
|
||
#endif
|
||
bool ok = ggml_sycl_compute_forward(*sycl_ctx, node);
|
||
if (!ok) {
|
||
fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
|
||
}
|
||
GGML_ASSERT(ok);
|
||
}
|
||
|
||
return GGML_STATUS_SUCCESS;
|
||
}
|
||
|
||
GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||
switch (op->op) {
|
||
case GGML_OP_UNARY:
|
||
switch (ggml_get_unary_op(op)) {
|
||
case GGML_UNARY_OP_GELU:
|
||
case GGML_UNARY_OP_SILU:
|
||
case GGML_UNARY_OP_RELU:
|
||
case GGML_UNARY_OP_HARDSIGMOID:
|
||
case GGML_UNARY_OP_HARDSWISH:
|
||
case GGML_UNARY_OP_GELU_QUICK:
|
||
case GGML_UNARY_OP_TANH:
|
||
return ggml_is_contiguous(op->src[0]);
|
||
default:
|
||
return false;
|
||
}
|
||
break;
|
||
case GGML_OP_MUL_MAT:
|
||
case GGML_OP_MUL_MAT_ID:
|
||
{
|
||
struct ggml_tensor * a;
|
||
struct ggml_tensor * b;
|
||
if (op->op == GGML_OP_MUL_MAT) {
|
||
a = op->src[0];
|
||
b = op->src[1];
|
||
} else {
|
||
a = op->src[2];
|
||
b = op->src[1];
|
||
}
|
||
if (a->ne[3] != b->ne[3]) {
|
||
return false;
|
||
}
|
||
ggml_type a_type = a->type;
|
||
if (a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ4_XS ||
|
||
a_type == GGML_TYPE_IQ3_XXS || a_type == GGML_TYPE_IQ3_S ||
|
||
a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ2_S ||
|
||
a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ1_M
|
||
) {
|
||
if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
} break;
|
||
case GGML_OP_GET_ROWS:
|
||
{
|
||
switch (op->src[0]->type) {
|
||
case GGML_TYPE_F16:
|
||
case GGML_TYPE_F32:
|
||
case GGML_TYPE_Q4_0:
|
||
case GGML_TYPE_Q4_1:
|
||
case GGML_TYPE_Q5_0:
|
||
case GGML_TYPE_Q5_1:
|
||
case GGML_TYPE_Q8_0:
|
||
return true;
|
||
default:
|
||
return false;
|
||
}
|
||
} break;
|
||
case GGML_OP_CPY:
|
||
{
|
||
ggml_type src0_type = op->src[0]->type;
|
||
ggml_type src1_type = op->src[1]->type;
|
||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
|
||
return true;
|
||
}
|
||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
|
||
return true;
|
||
}
|
||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
|
||
return true;
|
||
}
|
||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
|
||
return true;
|
||
}
|
||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
|
||
return true;
|
||
}
|
||
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
|
||
return true;
|
||
}
|
||
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
|
||
return true;
|
||
}
|
||
return false;
|
||
} break;
|
||
case GGML_OP_CONCAT:
|
||
{
|
||
ggml_type src0_type = op->src[0]->type;
|
||
return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
|
||
} break;
|
||
case GGML_OP_DUP:
|
||
case GGML_OP_NONE:
|
||
case GGML_OP_RESHAPE:
|
||
case GGML_OP_REPEAT:
|
||
case GGML_OP_VIEW:
|
||
case GGML_OP_PERMUTE:
|
||
case GGML_OP_TRANSPOSE:
|
||
case GGML_OP_NORM:
|
||
case GGML_OP_ADD:
|
||
case GGML_OP_MUL:
|
||
case GGML_OP_DIV:
|
||
case GGML_OP_RMS_NORM:
|
||
case GGML_OP_SCALE:
|
||
case GGML_OP_SQR:
|
||
case GGML_OP_CLAMP:
|
||
case GGML_OP_CONT:
|
||
case GGML_OP_DIAG_MASK_INF:
|
||
case GGML_OP_SOFT_MAX:
|
||
case GGML_OP_ROPE:
|
||
case GGML_OP_IM2COL:
|
||
case GGML_OP_POOL_2D:
|
||
case GGML_OP_SUM_ROWS:
|
||
case GGML_OP_ARGSORT:
|
||
case GGML_OP_ACC:
|
||
case GGML_OP_GROUP_NORM:
|
||
case GGML_OP_UPSCALE:
|
||
case GGML_OP_PAD:
|
||
case GGML_OP_LEAKY_RELU:
|
||
return true;
|
||
default:
|
||
return false;
|
||
}
|
||
|
||
UNUSED(backend);
|
||
}
|
||
|
||
GGML_CALL static bool ggml_backend_sycl_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||
const int min_batch_size = 32;
|
||
return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS && op->op != GGML_OP_MUL_MAT_ID;
|
||
GGML_UNUSED(backend);
|
||
}
|
||
|
||
GGML_CALL static bool ggml_backend_sycl_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||
if (buft->iface.get_name != ggml_backend_sycl_buffer_type_name) {
|
||
return false;
|
||
}
|
||
ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
|
||
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
||
return buft_ctx->device == sycl_ctx->device;
|
||
}
|
||
|
||
static ggml_backend_i ggml_backend_sycl_interface = {
|
||
/* .get_name = */ ggml_backend_sycl_name,
|
||
/* .free = */ ggml_backend_sycl_free,
|
||
/* .get_default_buffer_type = */ ggml_backend_sycl_get_default_buffer_type,
|
||
/* .set_tensor_async = */ ggml_backend_sycl_set_tensor_async,
|
||
/* .get_tensor_async = */ ggml_backend_sycl_get_tensor_async,
|
||
/* .cpy_tensor_async = */ NULL, //ggml_backend_sycl_cpy_tensor_async, // TODO: update for the new interface
|
||
/* .synchronize = */ ggml_backend_sycl_synchronize,
|
||
/* .graph_plan_create = */ NULL,
|
||
/* .graph_plan_free = */ NULL,
|
||
/* .graph_plan_update = */ NULL,
|
||
/* .graph_plan_compute = */ NULL,
|
||
/* .graph_compute = */ ggml_backend_sycl_graph_compute,
|
||
/* .supports_op = */ ggml_backend_sycl_supports_op,
|
||
/* .supports_buft = */ ggml_backend_sycl_supports_buft,
|
||
/* .offload_op = */ ggml_backend_sycl_offload_op,
|
||
/* .event_new = */ NULL,
|
||
/* .event_free = */ NULL,
|
||
/* .event_record = */ NULL,
|
||
/* .event_wait = */ NULL,
|
||
/* .event_synchronize = */ NULL,
|
||
};
|
||
|
||
static ggml_guid_t ggml_backend_sycl_guid() {
|
||
static ggml_guid guid = { 0x58, 0x05, 0x13, 0x8f, 0xcd, 0x3a, 0x61, 0x9d, 0xe7, 0xcd, 0x98, 0xa9, 0x03, 0xfd, 0x7c, 0x53 };
|
||
return &guid;
|
||
}
|
||
|
||
GGML_CALL ggml_backend_t ggml_backend_sycl_init(int device) {
|
||
GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_init\n");
|
||
ggml_check_sycl();
|
||
|
||
check_allow_gpu_index(device);
|
||
|
||
ggml_backend_sycl_context * ctx = new ggml_backend_sycl_context(device);
|
||
if (ctx == nullptr) {
|
||
fprintf(stderr, "%s: error: failed to allocate context\n", __func__);
|
||
return nullptr;
|
||
};
|
||
|
||
ggml_backend_t sycl_backend = new ggml_backend {
|
||
/* .guid = */ ggml_backend_sycl_guid(),
|
||
/* .interface = */ ggml_backend_sycl_interface,
|
||
/* .context = */ ctx
|
||
};
|
||
|
||
return sycl_backend;
|
||
}
|
||
|
||
bool ggml_backend_is_sycl(ggml_backend_t backend) {
|
||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_sycl_guid());
|
||
}
|
||
|
||
GGML_CALL int ggml_backend_sycl_get_device_count() {
|
||
GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_count\n");
|
||
return ggml_sycl_info().device_count;
|
||
}
|
||
|
||
GGML_CALL static ggml_backend_t ggml_backend_reg_sycl_init(const char * params, void * user_data) {
|
||
ggml_backend_t sycl_backend = ggml_backend_sycl_init((int) (intptr_t) user_data);
|
||
return sycl_backend;
|
||
|
||
UNUSED(params);
|
||
}
|
||
|
||
extern "C" int ggml_backend_sycl_reg_devices();
|
||
|
||
int ggml_backend_sycl_reg_devices() {
|
||
assert(ggml_sycl_info().device_count>0);
|
||
for (int i = 0; i < ggml_sycl_info().device_count; i++) {
|
||
char name[128];
|
||
snprintf(name, sizeof(name), "%s%d", GGML_SYCL_NAME, i);
|
||
ggml_backend_register(name, ggml_backend_reg_sycl_init, ggml_backend_sycl_buffer_type(i), (void *) (intptr_t) i);
|
||
}
|
||
return ggml_sycl_info().device_count;
|
||
}
|