llama.cpp/examples/train-text-from-scratch
slaren 16bc66d947
llama.cpp : split llama_context_params into model and context params (#3301)
* llama.cpp : split llama_context_params into model and context params

ggml-ci

* fix metal build

* fix freq_base/scale default to model value

* llama-bench : keep the same model between tests when possible

* move n_threads to llama_context_params, add n_threads_batch

* fix mpi build

* remove kv_size(), cuda scratch fixes

* remove low-vram option

* add n_threads_batch to system info, refactor to get_system_info()

* add documentation about --threads-batch to the READMEs

* llama-bench fix

* main : fix rope freq/scale warning

* llama.cpp : add llama_get_model
common : add llama_tokenize from model

* remove duplicated ctx/model functions

ggml-ci

* cuda : print total VRAM used
2023-09-28 22:42:38 +03:00
..
2023-07-19 10:01:11 +03:00
2023-09-28 21:40:11 +03:00

train-text-from-scratch

Basic usage instructions:

# get training data
wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/shakespeare.txt

# train
./bin/train-text-from-scratch \
        --vocab-model ../models/ggml-vocab-llama.gguf \
        --ctx 64 --embd 256 --head 8 --layer 16 \
        --checkpoint-in  chk-shakespeare-256x16-LATEST.gguf \
        --checkpoint-out chk-shakespeare-256x16-ITERATION.gguf \
        --model-out ggml-shakespeare-256x16-f32-ITERATION.gguf \
        --train-data "shakespeare.txt" \
        -t 6 -b 16 --seed 1 --adam-iter 256 \
        --no-checkpointing

# predict
./bin/main -m ggml-shakespeare-256x16-f32.gguf

Output files will be saved every N iterations (config with --save-every N). The pattern "ITERATION" in the output filenames will be replaced with the iteration number and "LATEST" for the latest output.

To train GGUF models just pass them to --checkpoint-in FN.