llama.cpp/common/common.cpp
compilade c2101a2e90
llama : support Mamba Selective State Space Models (#5328)
* mamba : begin working on support for Mamba SSM

* mamba : begin figuring out how to (ab)use the kv cache for Mamba

* mamba : recurrent inference almost works, but incoherent

* mamba : recurrent inference WORKS!!!

* convert : optionally use d_conv and d_state from config.json for Mamba

* mamba : refactor recurrent conv, resulting in 20% perf increase

It's still slower than I'd like, but I did not really optimize `ggml_exp` yet.

I also refactored `ggml_exp` to work with tensors with more than 2 dimensions.

* ggml : parallelize ggml_exp

This results in 8% faster token generation for Mamba-130M.

* mamba : simplify the conv step with a self-overlapping view

Turns out the conv_state can be made smaller by one column.
Note that this breaks existing GGUFs of Mamba,
because the key_value_length field is tied to the conv_state size.

Convolution with a self-overlapping view is cool!
And it's much simpler than what I initially thought would be necessary
to make the convolution step work with more than 1 token at a time.

Next step is to make the SSM step work on batches of tokens too,
and thus I need to figure out a way to make a parallel selective scan
which will keep the ssm_state small and won't make it bigger
by a factor of (n_layer * batch_size).

* llama : fix Mamba KV self size wrongly displaying as f16 instead of f32

Relatedly, I also tried to see if other types than f32 worked for the states,
but they don't, because of the operators used.
It's probably better anyway to keep lots of precision there,
since the states are small anyway.

* mamba : fix self-overlapping view depth stride

* mamba : handle batches of more than 1 token

This means running Mamba no longer crashes when using the default settings!
And probably also slightly faster prompt processing.
Both batched and non-batched processing yield the same output.

Previously, the state was not cleared when starting a sequence.
Next step is to make the KV cache API work as expected for Mamba models.

* ggml: add ggml_ssm_scan to help with parallel selective scan

If the selective scan was implemented without a custom operator,
there would be waaay too many nodes in the graph. For example,
for Mamba-130M, with a batch size of 512 (the default),
a naive selective scan could add at least 24*512=12288 nodes,
which is more than LLAMA_MAX_NODES (8192),
and that's only for the smallest Mamba model.
So it's much cleaner with a custom operator.
Not sure about the name, though.

* ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation

This will help with performance on CPU if ggml_vec_mul_f32
and ggml_vec_add_f32 are ever optimized with SIMD.

* mamba : very basic quantization support

Mostly works, but there is currently no difference
between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same).
Most of the SSM-specific weights can be kept in f32 without affecting
the size that much, since they are relatively small.
(the linear projection weights are responsible for most of Mamba's size)

Too much quantization seems to make the state degrade quite fast, and
the model begins to output gibberish.
It seems to affect bigger models to a lesser extent than small models,
but I'm not sure by how much.

Experimentation will be needed to figure out which weights are more important
for the _M (and _L?) variants of k-quants for Mamba.

* convert : fix wrong name for layer norm weight of offical Mamba models

I was using Q-bert/Mamba-* models before, which have a slighlty different
naming scheme for the weights.
(they start with "model.layers" instead of "backbone.layers")

* mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator

This increases performance on CPU by around 30% for prompt processing,
and by around 20% for text generation.

However, it also makes the ggml_exp and ggml_soft_plus operators unused.
Whether or not they should be kept will be decided later.

* convert : for Mamba, also consider the "MambaLMHeadModel" arch name

It's the name of the class of the official implementation,
though they don't use it (yet) in the "architectures" field of config.json

* mamba : fix vocab size problems with official models

The perplexity was waaaay to high for models with a non-round vocab size.
Not sure why, but it needed to be fixed in the metadata.

Note that this breaks existing GGUF-converted Mamba models,
but **only if** the vocab size was not already rounded.

* ggml : remove ggml_exp and ggml_soft_plus

They did not exist anyway outside of this branch,
and since ggml_ssm_scan fused operations together, they are unused.
It's always possible to bring them back if needed.

* mamba : remove some useless comments

No code change.

* convert : fix flake8 linter errors

* mamba : apply suggestions from code review

* mamba : remove unecessary branch for row-wise ssm_state and C multiplication

It was previously done to avoid permuting when only one token is processed
at a time (like when generating text), but permuting is cheap,
and dynamically changing the compute graph is not future-proof.

* ggml : in ggml_ssm_scan, use more appropriate asserts

* ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32

* mamba : multiple sequences, but one at a time

This is a step towards making this Mamba implementation usable
with the server example (the way the system prompt is kept when clearing
the client slots will need to be changed before this can work, though).

The KV cache size for this kind of model is tied to the maximum number
of sequences kept at any single time.
For now, this number is obtained from n_parallel (plus one,
to have an extra sequence to dedicate to the system prompt),
but there might be a better way to do this which won't also
make the main example use 2 cells even if only 1 is really used.
(for this specific case, --parallel 0 helps)

Simultaneous sequence processing will probably require changes to
ggml_ssm_scan, and possibly a new operator for the conv step.

* mamba : support llama_kv_cache_seq_cp

This (mis)uses the logic around K shifts, because tokens in a state
can't be shifted anyway, and because inp_K_shift has the right shape and type.
Using ggml_get_rows is a nice way to do copies, but copy chains can't work.
Fortunately, copy chains don't really seem to be used in the examples.

Each KV cell is dedicated to the sequence ID corresponding to its own index.

* mamba : use a state mask

It's cleaner than the previous heuristic of
checking for the pos of the first token in the batch.

inp_KQ_mask could not be re-used for this, because it has the wrong shape
and because it seems more suited to the next step of
simultaneous sequence processing (helping with the problem of
remembering which token belongs to which sequence(s)/state(s)).

* llama : replace the usage of n_ctx with kv_self.size in many places

* mamba : use n_tokens directly instead of n_tok

* mamba : in comments, properly refer to KV cells instead of slots

* mamba : reduce memory usage of ggml_ssm_scan

From 290.37 MiB to 140.68 MiB of CPU compute buffer size
with Mamba 3B with a batch size of 512.

The result tensor of ggml_ssm_scan was previously a big part
of the CPU compute buffer size. To make it smaller,
it does not contain the intermediate ssm states anymore.
Both y and the last ssm state are combined in the result tensor,
because it seems only a single tensor can be returned by an operator
with the way the graph is built.

* mamba : simultaneous sequence processing

A batch can now contain tokens from multiple sequences.

This is necessary for at least the parallel example, the server example,
and the HellaSwag test in the perplexity example.

However, for this to be useful, uses of llama_kv_cache_seq_rm/cp
will need to be changed to work on whole sequences.

* ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba

This operator makes it possible to use and update the correct states
for each token of the batch in the same way as ggml_ssm_scan.
Other solutions which use existing operators would need loops which would
add too many nodes to the graph (at least the ones I thought of).

Using this operator further reduces the size of the CPU compute buffer
from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512.
And (at least on CPU), it's a bit faster than before.

Note that "ggml_ssm_conv" is probably not the most appropriate name,
and it could be changed if a better one is found.

* llama : add inp_s_seq as a new input tensor

The most convenient implementation to select the correct state (for Mamba)
for each token is to directly get the correct index from a tensor.
This is why inp_s_seq is storing int32_t and not floats.

The other, less convenient way to select the correct state would be
to have inp_KQ_mask contain 1.0f for each state used by a token
and 0.0f otherwise. This complicates quickly fetching the first used
state of a token, and is also less efficient because a whole row
of the mask would always need to be read for each token.

Using indexes makes it easy to stop searching when there are
no more sequences for a token, and the first sequence assigned
is always very quickly available (it's the first element of each row).

* mamba : support llama_kv_cache_seq_cp copy chains

* mamba : support shifting and dividing the kv cache pos

* mamba : make the server and parallel examples work with whole sequences

A seq_id is dedicated to the system prompt in both cases.

* llama : make llama_kv_cache_seq_rm return whether it succeeded or not

* mamba : dedicate an input tensor for state copy indices

This is cleaner and makes it easier to adapt when/if token positions
(and by extension, inp_K_shift) are no longer integers.

* mamba : adapt perplexity, batched, and batched-bench examples

* perplexity : limit the max number of sequences

This adapts to what the loaded model can provide.

* llama : add llama_n_max_seq to get the upper limit for seq_ids

Used by the perplexity example.

* batched : pass n_parallel to the model's context params

This should have been there already, but it wasn't.

* batched-bench : reserve sequences to support Mamba

* batched-bench : fix tokens being put in wrong sequences

Generation quality isn't what's measured in there anyway,
but at least using the correct sequences avoids using non-consecutive
token positions.

* mamba : stop abusing attention metadata

This breaks existing converted-to-GGUF Mamba models,
but will allow supporting mixed architectures like MambaFormer
without needing to break Mamba models.

This will also allow changing the size of Mamba's states
without having to reconvert models in the future.
(e.g. using something else than d_conv - 1 columns for the conv_states
 will not require breaking existing converted Mamba models again)

* gguf-py : add new KV metadata key-value pairs for Mamba

* llama : add new metadata key-value pairs for Mamba

* llama : guard against divisions by zero when n_head is 0

* mamba : rename "unlimited" KV cache property to "recurrent"

* mamba : more correctly update the "used" field of the KV cache

* ggml : in ggml_ssm_scan, use a threshold for soft_plus

This is how the official Mamba implementation does it,
and it's also what torch.nn.Softplus does.

* convert : for Mamba, fallback to internal NeoX tokenizer

The resulting models are exactly the same
as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there.

* mamba : support state saving and restoring

* ggml : implicitly pass src tensors through dst for Mamba-related ops

* mamba : clarify some comments

* server : fix cache_tokens not getting correctly resized

Otherwise, when the "we have to evaluate at least 1 token" special case
was triggered, an extra token was kept in cache_tokens even if it was
removed from the KV cache.

For Mamba, this caused useless prompt reprocessing when the previous
request triggered the above case.

* convert-hf : support new metadata keys for Mamba

For the models available at
https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406

* mamba : rename metadata to be more similar to transformers library

This breaks existing converted-to-GGUF models,
but the metadata names are more "standard".

* mamba : support mamba-*-hf models

These models share their token_embd.weight with their output.weight

* mamba : add missing spaces

This is purely a formatting change.

* convert-hf : omit output.weight when identical with token_embd.weight

Only for Mamba for now, but it might be relevant for other models eventually.
Most Mamba models actually share these two tensors, albeit implicitly.

* readme : add Mamba to supported models, and add recent API changes

* mamba : move state_seq and state_mask views outside layer loop

A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 17:31:00 -05:00

1855 lines
79 KiB
C++

#include "common.h"
#include "llama.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iterator>
#include <iostream>
#include <regex>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <cinttypes>
#if defined(__APPLE__) && defined(__MACH__)
#include <sys/types.h>
#include <sys/sysctl.h>
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
# define NOMINMAX
#endif
#include <codecvt>
#include <locale>
#include <windows.h>
#include <fcntl.h>
#include <io.h>
#else
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <unistd.h>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#if (defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL))
#define GGML_USE_CUBLAS_SYCL
#endif
#if (defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN)
#define GGML_USE_CUBLAS_SYCL_VULKAN
#endif
int32_t get_num_physical_cores() {
#ifdef __linux__
// enumerate the set of thread siblings, num entries is num cores
std::unordered_set<std::string> siblings;
for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
std::ifstream thread_siblings("/sys/devices/system/cpu"
+ std::to_string(cpu) + "/topology/thread_siblings");
if (!thread_siblings.is_open()) {
break; // no more cpus
}
std::string line;
if (std::getline(thread_siblings, line)) {
siblings.insert(line);
}
}
if (!siblings.empty()) {
return static_cast<int32_t>(siblings.size());
}
#elif defined(__APPLE__) && defined(__MACH__)
int32_t num_physical_cores;
size_t len = sizeof(num_physical_cores);
int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
if (result == 0) {
return num_physical_cores;
}
result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
if (result == 0) {
return num_physical_cores;
}
#elif defined(_WIN32)
//TODO: Implement
#endif
unsigned int n_threads = std::thread::hardware_concurrency();
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
}
void process_escapes(std::string& input) {
std::size_t input_len = input.length();
std::size_t output_idx = 0;
for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
switch (input[++input_idx]) {
case 'n': input[output_idx++] = '\n'; break;
case 'r': input[output_idx++] = '\r'; break;
case 't': input[output_idx++] = '\t'; break;
case '\'': input[output_idx++] = '\''; break;
case '\"': input[output_idx++] = '\"'; break;
case '\\': input[output_idx++] = '\\'; break;
case 'x':
// Handle \x12, etc
if (input_idx + 2 < input_len) {
const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
char *err_p = nullptr;
const long val = std::strtol(x, &err_p, 16);
if (err_p == x + 2) {
input_idx += 2;
input[output_idx++] = char(val);
break;
}
}
// fall through
default: input[output_idx++] = '\\';
input[output_idx++] = input[input_idx]; break;
}
} else {
input[output_idx++] = input[input_idx];
}
}
input.resize(output_idx);
}
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
bool result = true;
try {
if (!gpt_params_parse_ex(argc, argv, params)) {
gpt_print_usage(argc, argv, gpt_params());
exit(0);
}
}
catch (const std::invalid_argument & ex) {
fprintf(stderr, "%s\n", ex.what());
gpt_print_usage(argc, argv, gpt_params());
exit(1);
}
return result;
}
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
bool invalid_param = false;
std::string arg;
const std::string arg_prefix = "--";
llama_sampling_params & sparams = params.sparams;
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
std::replace(arg.begin(), arg.end(), '_', '-');
}
if (arg == "-s" || arg == "--seed") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.seed = std::stoul(argv[i]);
} else if (arg == "-t" || arg == "--threads") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_threads = std::stoi(argv[i]);
if (params.n_threads <= 0) {
params.n_threads = std::thread::hardware_concurrency();
}
} else if (arg == "-tb" || arg == "--threads-batch") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_threads_batch = std::stoi(argv[i]);
if (params.n_threads_batch <= 0) {
params.n_threads_batch = std::thread::hardware_concurrency();
}
} else if (arg == "-td" || arg == "--threads-draft") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_threads_draft = std::stoi(argv[i]);
if (params.n_threads_draft <= 0) {
params.n_threads_draft = std::thread::hardware_concurrency();
}
} else if (arg == "-tbd" || arg == "--threads-batch-draft") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_threads_batch_draft = std::stoi(argv[i]);
if (params.n_threads_batch_draft <= 0) {
params.n_threads_batch_draft = std::thread::hardware_concurrency();
}
} else if (arg == "-p" || arg == "--prompt") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.prompt = argv[i];
} else if (arg == "-e" || arg == "--escape") {
params.escape = true;
} else if (arg == "--prompt-cache") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.path_prompt_cache = argv[i];
} else if (arg == "--prompt-cache-all") {
params.prompt_cache_all = true;
} else if (arg == "--prompt-cache-ro") {
params.prompt_cache_ro = true;
} else if (arg == "-bf" || arg == "--binary-file") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::ifstream file(argv[i], std::ios::binary);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
invalid_param = true;
break;
}
// store the external file name in params
params.prompt_file = argv[i];
std::ostringstream ss;
ss << file.rdbuf();
params.prompt = ss.str();
fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), argv[i]);
} else if (arg == "-f" || arg == "--file") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
invalid_param = true;
break;
}
// store the external file name in params
params.prompt_file = argv[i];
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
if (!params.prompt.empty() && params.prompt.back() == '\n') {
params.prompt.pop_back();
}
} else if (arg == "-n" || arg == "--n-predict") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_predict = std::stoi(argv[i]);
} else if (arg == "--top-k") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.top_k = std::stoi(argv[i]);
} else if (arg == "-c" || arg == "--ctx-size") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_ctx = std::stoi(argv[i]);
} else if (arg == "--grp-attn-n" || arg == "-gan") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.grp_attn_n = std::stoi(argv[i]);
} else if (arg == "--grp-attn-w" || arg == "-gaw") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.grp_attn_w = std::stoi(argv[i]);
} else if (arg == "--rope-freq-base") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.rope_freq_base = std::stof(argv[i]);
} else if (arg == "--rope-freq-scale") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.rope_freq_scale = std::stof(argv[i]);
} else if (arg == "--rope-scaling") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::string value(argv[i]);
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
else { invalid_param = true; break; }
} else if (arg == "--rope-scale") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.rope_freq_scale = 1.0f/std::stof(argv[i]);
} else if (arg == "--yarn-orig-ctx") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_orig_ctx = std::stoi(argv[i]);
} else if (arg == "--yarn-ext-factor") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_ext_factor = std::stof(argv[i]);
} else if (arg == "--yarn-attn-factor") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_attn_factor = std::stof(argv[i]);
} else if (arg == "--yarn-beta-fast") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_beta_fast = std::stof(argv[i]);
} else if (arg == "--yarn-beta-slow") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_beta_slow = std::stof(argv[i]);
} else if (arg == "--pooling") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::string value(argv[i]);
/**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
else { invalid_param = true; break; }
} else if (arg == "--defrag-thold" || arg == "-dt") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.defrag_thold = std::stof(argv[i]);
} else if (arg == "--samplers") {
if (++i >= argc) {
invalid_param = true;
break;
}
const auto sampler_names = string_split(argv[i], ';');
sparams.samplers_sequence = sampler_types_from_names(sampler_names, true);
} else if (arg == "--sampling-seq") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.samplers_sequence = sampler_types_from_chars(argv[i]);
} else if (arg == "--top-p") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.top_p = std::stof(argv[i]);
} else if (arg == "--min-p") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.min_p = std::stof(argv[i]);
} else if (arg == "--temp") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.temp = std::stof(argv[i]);
sparams.temp = std::max(sparams.temp, 0.0f);
} else if (arg == "--tfs") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.tfs_z = std::stof(argv[i]);
} else if (arg == "--typical") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.typical_p = std::stof(argv[i]);
} else if (arg == "--repeat-last-n") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.penalty_last_n = std::stoi(argv[i]);
sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n);
} else if (arg == "--repeat-penalty") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.penalty_repeat = std::stof(argv[i]);
} else if (arg == "--frequency-penalty") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.penalty_freq = std::stof(argv[i]);
} else if (arg == "--presence-penalty") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.penalty_present = std::stof(argv[i]);
} else if (arg == "--dynatemp-range") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.dynatemp_range = std::stof(argv[i]);
} else if (arg == "--dynatemp-exp") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.dynatemp_exponent = std::stof(argv[i]);
} else if (arg == "--mirostat") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.mirostat = std::stoi(argv[i]);
} else if (arg == "--mirostat-lr") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.mirostat_eta = std::stof(argv[i]);
} else if (arg == "--mirostat-ent") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.mirostat_tau = std::stof(argv[i]);
} else if (arg == "--cfg-negative-prompt") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.cfg_negative_prompt = argv[i];
} else if (arg == "--cfg-negative-prompt-file") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
invalid_param = true;
break;
}
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt));
if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') {
sparams.cfg_negative_prompt.pop_back();
}
} else if (arg == "--cfg-scale") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.cfg_scale = std::stof(argv[i]);
} else if (arg == "-b" || arg == "--batch-size") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_batch = std::stoi(argv[i]);
} else if (arg == "--keep") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_keep = std::stoi(argv[i]);
} else if (arg == "--draft") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_draft = std::stoi(argv[i]);
} else if (arg == "--chunks") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_chunks = std::stoi(argv[i]);
} else if (arg == "-np" || arg == "--parallel") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_parallel = std::stoi(argv[i]);
} else if (arg == "-ns" || arg == "--sequences") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_sequences = std::stoi(argv[i]);
} else if (arg == "--p-split" || arg == "-ps") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.p_split = std::stof(argv[i]);
} else if (arg == "-m" || arg == "--model") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.model = argv[i];
} else if (arg == "-md" || arg == "--model-draft") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.model_draft = argv[i];
} else if (arg == "-a" || arg == "--alias") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.model_alias = argv[i];
} else if (arg == "--lora") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.lora_adapter.emplace_back(argv[i], 1.0f);
params.use_mmap = false;
} else if (arg == "--lora-scaled") {
if (++i >= argc) {
invalid_param = true;
break;
}
const char * lora_adapter = argv[i];
if (++i >= argc) {
invalid_param = true;
break;
}
params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
params.use_mmap = false;
} else if (arg == "--lora-base") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.lora_base = argv[i];
} else if (arg == "--mmproj") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.mmproj = argv[i];
} else if (arg == "--image") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.image = argv[i];
} else if (arg == "-i" || arg == "--interactive") {
params.interactive = true;
} else if (arg == "--embedding") {
params.embedding = true;
} else if (arg == "--interactive-first") {
params.interactive_first = true;
} else if (arg == "-ins" || arg == "--instruct") {
params.instruct = true;
} else if (arg == "-cml" || arg == "--chatml") {
params.chatml = true;
} else if (arg == "--infill") {
params.infill = true;
} else if (arg == "-dkvc" || arg == "--dump-kv-cache") {
params.dump_kv_cache = true;
} else if (arg == "-nkvo" || arg == "--no-kv-offload") {
params.no_kv_offload = true;
} else if (arg == "-ctk" || arg == "--cache-type-k") {
params.cache_type_k = argv[++i];
} else if (arg == "-ctv" || arg == "--cache-type-v") {
params.cache_type_v = argv[++i];
} else if (arg == "--multiline-input") {
params.multiline_input = true;
} else if (arg == "--simple-io") {
params.simple_io = true;
} else if (arg == "-cb" || arg == "--cont-batching") {
params.cont_batching = true;
} else if (arg == "--color") {
params.use_color = true;
} else if (arg == "--mlock") {
params.use_mlock = true;
} else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_gpu_layers = std::stoi(argv[i]);
if (!llama_supports_gpu_offload()) {
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
}
} else if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_gpu_layers_draft = std::stoi(argv[i]);
if (!llama_supports_gpu_offload()) {
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
}
} else if (arg == "--main-gpu" || arg == "-mg") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.main_gpu = std::stoi(argv[i]);
#ifndef GGML_USE_CUBLAS_SYCL
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL. Setting the main GPU has no effect.\n");
#endif // GGML_USE_CUBLAS_SYCL
} else if (arg == "--split-mode" || arg == "-sm") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::string arg_next = argv[i];
if (arg_next == "none") {
params.split_mode = LLAMA_SPLIT_MODE_NONE;
} else if (arg_next == "layer") {
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
} else if (arg_next == "row") {
#ifdef GGML_USE_SYCL
fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
exit(1);
#endif // GGML_USE_SYCL
params.split_mode = LLAMA_SPLIT_MODE_ROW;
} else {
invalid_param = true;
break;
}
#ifndef GGML_USE_CUBLAS_SYCL
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL. Setting the split mode has no effect.\n");
#endif // GGML_USE_CUBLAS_SYCL
} else if (arg == "--tensor-split" || arg == "-ts") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::string arg_next = argv[i];
// split string by , and /
const std::regex regex{R"([,/]+)"};
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
if (split_arg.size() >= llama_max_devices()) {
invalid_param = true;
break;
}
for (size_t i = 0; i < llama_max_devices(); ++i) {
if (i < split_arg.size()) {
params.tensor_split[i] = std::stof(split_arg[i]);
} else {
params.tensor_split[i] = 0.0f;
}
}
#ifndef GGML_USE_CUBLAS_SYCL_VULKAN
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL/Vulkan. Setting a tensor split has no effect.\n");
#endif // GGML_USE_CUBLAS_SYCL
} else if (arg == "--no-mmap") {
params.use_mmap = false;
} else if (arg == "--numa") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::string value(argv[i]);
/**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
else { invalid_param = true; break; }
} else if (arg == "--verbose-prompt") {
params.verbose_prompt = true;
} else if (arg == "--no-display-prompt") {
params.display_prompt = false;
} else if (arg == "-r" || arg == "--reverse-prompt") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.antiprompt.emplace_back(argv[i]);
} else if (arg == "-ld" || arg == "--logdir") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.logdir = argv[i];
if (params.logdir.back() != DIRECTORY_SEPARATOR) {
params.logdir += DIRECTORY_SEPARATOR;
}
} else if (arg == "--save-all-logits" || arg == "--kl-divergence-base") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.logits_file = argv[i];
} else if (arg == "--perplexity" || arg == "--all-logits") {
params.logits_all = true;
} else if (arg == "--ppl-stride") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.ppl_stride = std::stoi(argv[i]);
} else if (arg == "-ptc" || arg == "--print-token-count") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_print = std::stoi(argv[i]);
} else if (arg == "--ppl-output-type") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.ppl_output_type = std::stoi(argv[i]);
} else if (arg == "--hellaswag") {
params.hellaswag = true;
} else if (arg == "--hellaswag-tasks") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.hellaswag_tasks = std::stoi(argv[i]);
} else if (arg == "--winogrande") {
params.winogrande = true;
} else if (arg == "--winogrande-tasks") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.winogrande_tasks = std::stoi(argv[i]);
} else if (arg == "--multiple-choice") {
params.multiple_choice = true;
} else if (arg == "--multiple-choice-tasks") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.multiple_choice_tasks = std::stoi(argv[i]);
} else if (arg == "--kl-divergence") {
params.kl_divergence = true;
} else if (arg == "--ignore-eos") {
params.ignore_eos = true;
} else if (arg == "--no-penalize-nl") {
sparams.penalize_nl = false;
} else if (arg == "-l" || arg == "--logit-bias") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::stringstream ss(argv[i]);
llama_token key;
char sign;
std::string value_str;
try {
if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
} else {
throw std::exception();
}
} catch (const std::exception&) {
invalid_param = true;
break;
}
} else if (arg == "-h" || arg == "--help") {
return false;
} else if (arg == "--version") {
fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
exit(0);
} else if (arg == "--random-prompt") {
params.random_prompt = true;
} else if (arg == "--in-prefix-bos") {
params.input_prefix_bos = true;
} else if (arg == "--in-prefix") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.input_prefix = argv[i];
} else if (arg == "--in-suffix") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.input_suffix = argv[i];
} else if (arg == "--grammar") {
if (++i >= argc) {
invalid_param = true;
break;
}
sparams.grammar = argv[i];
} else if (arg == "--grammar-file") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
invalid_param = true;
break;
}
std::copy(
std::istreambuf_iterator<char>(file),
std::istreambuf_iterator<char>(),
std::back_inserter(sparams.grammar)
);
} else if (arg == "--override-kv") {
if (++i >= argc) {
invalid_param = true;
break;
}
char * sep = strchr(argv[i], '=');
if (sep == nullptr || sep - argv[i] >= 128) {
fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
struct llama_model_kv_override kvo;
std::strncpy(kvo.key, argv[i], sep - argv[i]);
kvo.key[sep - argv[i]] = 0;
sep++;
if (strncmp(sep, "int:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.int_value = std::atol(sep);
} else if (strncmp(sep, "float:", 6) == 0) {
sep += 6;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
kvo.float_value = std::atof(sep);
} else if (strncmp(sep, "bool:", 5) == 0) {
sep += 5;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
if (std::strcmp(sep, "true") == 0) {
kvo.bool_value = true;
} else if (std::strcmp(sep, "false") == 0) {
kvo.bool_value = false;
} else {
fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
} else {
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
params.kv_overrides.push_back(kvo);
#ifndef LOG_DISABLE_LOGS
// Parse args for logging parameters
} else if ( log_param_single_parse( argv[i] ) ) {
// Do nothing, log_param_single_parse automatically does it's thing
// and returns if a match was found and parsed.
} else if ( log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i] ) ) {
// We have a matching known parameter requiring an argument,
// now we need to check if there is anything after this argv
// and flag invalid_param or parse it.
if (++i >= argc) {
invalid_param = true;
break;
}
if( !log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i-1], argv[i]) ) {
invalid_param = true;
break;
}
// End of Parse args for logging parameters
#endif // LOG_DISABLE_LOGS
} else {
throw std::invalid_argument("error: unknown argument: " + arg);
}
}
if (invalid_param) {
throw std::invalid_argument("error: invalid parameter for argument: " + arg);
}
if (params.prompt_cache_all &&
(params.interactive || params.interactive_first ||
params.instruct)) {
throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
}
if (params.escape) {
process_escapes(params.prompt);
process_escapes(params.input_prefix);
process_escapes(params.input_suffix);
process_escapes(sparams.cfg_negative_prompt);
for (auto & antiprompt : params.antiprompt) {
process_escapes(antiprompt);
}
}
if (!params.kv_overrides.empty()) {
params.kv_overrides.emplace_back();
params.kv_overrides.back().key[0] = 0;
}
return true;
}
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
const llama_sampling_params & sparams = params.sparams;
std::string sampler_type_chars;
std::string sampler_type_names;
for (const auto sampler_type : sparams.samplers_sequence) {
sampler_type_chars += static_cast<char>(sampler_type);
sampler_type_names += sampler_type_to_name_string(sampler_type) + ";";
}
sampler_type_names.pop_back();
printf("\n");
printf("usage: %s [options]\n", argv[0]);
printf("\n");
printf("options:\n");
printf(" -h, --help show this help message and exit\n");
printf(" --version show version and build info\n");
printf(" -i, --interactive run in interactive mode\n");
printf(" --interactive-first run in interactive mode and wait for input right away\n");
printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n");
printf(" -cml, --chatml run in chatml mode (use with ChatML-compatible models)\n");
printf(" --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n");
printf(" -r PROMPT, --reverse-prompt PROMPT\n");
printf(" halt generation at PROMPT, return control in interactive mode\n");
printf(" (can be specified more than once for multiple prompts).\n");
printf(" --color colorise output to distinguish prompt and user input from generations\n");
printf(" -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
printf(" -t N, --threads N number of threads to use during generation (default: %d)\n", params.n_threads);
printf(" -tb N, --threads-batch N\n");
printf(" number of threads to use during batch and prompt processing (default: same as --threads)\n");
printf(" -td N, --threads-draft N");
printf(" number of threads to use during generation (default: same as --threads)\n");
printf(" -tbd N, --threads-batch-draft N\n");
printf(" number of threads to use during batch and prompt processing (default: same as --threads-draft)\n");
printf(" -p PROMPT, --prompt PROMPT\n");
printf(" prompt to start generation with (default: empty)\n");
printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
printf(" --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n");
printf(" --prompt-cache-all if specified, saves user input and generations to cache as well.\n");
printf(" not supported with --interactive or other interactive options\n");
printf(" --prompt-cache-ro if specified, uses the prompt cache but does not update it.\n");
printf(" --random-prompt start with a randomized prompt.\n");
printf(" --in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string\n");
printf(" --in-prefix STRING string to prefix user inputs with (default: empty)\n");
printf(" --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
printf(" -f FNAME, --file FNAME\n");
printf(" prompt file to start generation.\n");
printf(" -bf FNAME, --binary-file FNAME\n");
printf(" binary file containing multiple choice tasks.\n");
printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
printf(" --samplers samplers that will be used for generation in the order, separated by \';\'\n");
printf(" (default: %s)\n", sampler_type_names.c_str());
printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sampler_type_chars.c_str());
printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
printf(" --min-p N min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p);
printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z);
printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p);
printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.penalty_last_n);
printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.penalty_repeat);
printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_present);
printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_freq);
printf(" --dynatemp-range N dynamic temperature range (default: %.1f, 0.0 = disabled)\n", (double)sparams.dynatemp_range);
printf(" --dynatemp-exp N dynamic temperature exponent (default: %.1f)\n", (double)sparams.dynatemp_exponent);
printf(" --mirostat N use Mirostat sampling.\n");
printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat);
printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)sparams.mirostat_eta);
printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)sparams.mirostat_tau);
printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
printf(" modifies the likelihood of token appearing in the completion,\n");
printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
printf(" or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
printf(" --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n");
printf(" --grammar-file FNAME file to read grammar from\n");
printf(" --cfg-negative-prompt PROMPT\n");
printf(" negative prompt to use for guidance. (default: empty)\n");
printf(" --cfg-negative-prompt-file FNAME\n");
printf(" negative prompt file to use for guidance. (default: empty)\n");
printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale);
printf(" --rope-scaling {none,linear,yarn}\n");
printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
printf(" --rope-scale N RoPE context scaling factor, expands context by a factor of N\n");
printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n");
printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
printf(" --yarn-orig-ctx N YaRN: original context size of model (default: 0 = model training context size)\n");
printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
printf(" --pooling {none,mean,cls}\n");
printf(" pooling type for embeddings, use model default if unspecified\n");
printf(" -dt N, --defrag-thold N\n");
printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold);
printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
printf(" --no-penalize-nl do not penalize newline token\n");
printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp);
printf(" --all-logits return logits for all tokens in the batch (default: disabled)\n");
printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
printf(" --winogrande compute Winogrande score over random tasks from datafile supplied with -f\n");
printf(" --winogrande-tasks N number of tasks to use when computing the Winogrande score (default: %zu)\n", params.winogrande_tasks);
printf(" --multiple-choice compute multiple choice score over random tasks from datafile supplied with -f\n");
printf(" --multiple-choice-tasks N number of tasks to use when computing the multiple choice score (default: %zu)\n", params.winogrande_tasks);
printf(" --kl-divergence computes KL-divergence to logits provided via --kl-divergence-base\n");
printf(" --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
printf(" --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft);
printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel);
printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences);
printf(" -ps N, --p-split N speculative decoding split probability (default: %.1f)\n", (double)params.p_split);
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n");
if (llama_supports_mlock()) {
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
}
if (llama_supports_mmap()) {
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
}
printf(" --numa TYPE attempt optimizations that help on some NUMA systems\n");
printf(" - distribute: spread execution evenly over all nodes\n");
printf(" - isolate: only spawn threads on CPUs on the node that execution started on\n");
printf(" - numactl: use the CPU map provided by numactl\n");
printf(" if run without this previously, it is recommended to drop the system page cache before using this\n");
printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n");
if (llama_supports_gpu_offload()) {
printf(" -ngl N, --n-gpu-layers N\n");
printf(" number of layers to store in VRAM\n");
printf(" -ngld N, --n-gpu-layers-draft N\n");
printf(" number of layers to store in VRAM for the draft model\n");
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
printf(" how to split the model across multiple GPUs, one of:\n");
printf(" - none: use one GPU only\n");
printf(" - layer (default): split layers and KV across GPUs\n");
printf(" - row: split rows across GPUs\n");
printf(" -ts SPLIT, --tensor-split SPLIT\n");
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
}
printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
printf(" -gan N, --grp-attn-n N\n");
printf(" group-attention factor (default: %d)\n", params.grp_attn_n);
printf(" -gaw N, --grp-attn-w N\n");
printf(" group-attention width (default: %.1f)\n", (double)params.grp_attn_w);
printf(" -dkvc, --dump-kv-cache\n");
printf(" verbose print of the KV cache\n");
printf(" -nkvo, --no-kv-offload\n");
printf(" disable KV offload\n");
printf(" -ctk TYPE, --cache-type-k TYPE\n");
printf(" KV cache data type for K (default: %s)\n", params.cache_type_k.c_str());
printf(" -ctv TYPE, --cache-type-v TYPE\n");
printf(" KV cache data type for V (default: %s)\n", params.cache_type_v.c_str());
printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
printf(" -m FNAME, --model FNAME\n");
printf(" model path (default: %s)\n", params.model.c_str());
printf(" -md FNAME, --model-draft FNAME\n");
printf(" draft model for speculative decoding\n");
printf(" -ld LOGDIR, --logdir LOGDIR\n");
printf(" path under which to save YAML logs (no logging if unset)\n");
printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
printf(" -ptc N, --print-token-count N\n");
printf(" print token count every N tokens (default: %d)\n", params.n_print);
printf("\n");
#ifndef LOG_DISABLE_LOGS
log_print_usage();
#endif // LOG_DISABLE_LOGS
}
std::string get_system_info(const gpt_params & params) {
std::ostringstream os;
os << "system_info: n_threads = " << params.n_threads;
if (params.n_threads_batch != -1) {
os << " (n_threads_batch = " << params.n_threads_batch << ")";
}
os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
return os.str();
}
std::string gpt_random_prompt(std::mt19937 & rng) {
const int r = rng() % 10;
switch (r) {
case 0: return "So";
case 1: return "Once upon a time";
case 2: return "When";
case 3: return "The";
case 4: return "After";
case 5: return "If";
case 6: return "import";
case 7: return "He";
case 8: return "She";
case 9: return "They";
}
GGML_UNREACHABLE();
}
//
// String utils
//
std::vector<std::string> string_split(std::string input, char separator) {
std::vector<std::string> parts;
size_t separator_pos = input.find(separator);
while (separator_pos != std::string::npos) {
std::string part = input.substr(0, separator_pos);
parts.emplace_back(part);
input = input.substr(separator_pos + 1);
separator_pos = input.find(separator);
}
parts.emplace_back(input);
return parts;
}
std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
{"top_k", llama_sampler_type::TOP_K},
{"top_p", llama_sampler_type::TOP_P},
{"typical_p", llama_sampler_type::TYPICAL_P},
{"min_p", llama_sampler_type::MIN_P},
{"tfs_z", llama_sampler_type::TFS_Z},
{"temperature", llama_sampler_type::TEMPERATURE}
};
// since samplers names are written multiple ways
// make it ready for both system names and input names
std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
{"top-k", llama_sampler_type::TOP_K},
{"top-p", llama_sampler_type::TOP_P},
{"nucleus", llama_sampler_type::TOP_P},
{"typical-p", llama_sampler_type::TYPICAL_P},
{"typical", llama_sampler_type::TYPICAL_P},
{"min-p", llama_sampler_type::MIN_P},
{"tfs-z", llama_sampler_type::TFS_Z},
{"tfs", llama_sampler_type::TFS_Z},
{"temp", llama_sampler_type::TEMPERATURE}
};
std::vector<llama_sampler_type> sampler_types;
sampler_types.reserve(names.size());
for (const auto & name : names)
{
auto sampler_item = sampler_canonical_name_map.find(name);
if (sampler_item != sampler_canonical_name_map.end())
{
sampler_types.push_back(sampler_item->second);
}
else
{
if (allow_alt_names)
{
sampler_item = sampler_alt_name_map.find(name);
if (sampler_item != sampler_alt_name_map.end())
{
sampler_types.push_back(sampler_item->second);
}
}
}
}
return sampler_types;
}
std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string) {
std::unordered_map<char, llama_sampler_type> sampler_name_map {
{'k', llama_sampler_type::TOP_K},
{'p', llama_sampler_type::TOP_P},
{'y', llama_sampler_type::TYPICAL_P},
{'m', llama_sampler_type::MIN_P},
{'f', llama_sampler_type::TFS_Z},
{'t', llama_sampler_type::TEMPERATURE}
};
std::vector<llama_sampler_type> sampler_types;
sampler_types.reserve(names_string.size());
for (const auto & c : names_string) {
const auto sampler_item = sampler_name_map.find(c);
if (sampler_item != sampler_name_map.end()) {
sampler_types.push_back(sampler_item->second);
}
}
return sampler_types;
}
std::string sampler_type_to_name_string(llama_sampler_type sampler_type) {
switch (sampler_type) {
case llama_sampler_type::TOP_K: return "top_k";
case llama_sampler_type::TFS_Z: return "tfs_z";
case llama_sampler_type::TYPICAL_P: return "typical_p";
case llama_sampler_type::TOP_P: return "top_p";
case llama_sampler_type::MIN_P: return "min_p";
case llama_sampler_type::TEMPERATURE: return "temperature";
default : return "";
}
}
//
// Model utils
//
struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
auto mparams = llama_model_default_params();
if (params.n_gpu_layers != -1) {
mparams.n_gpu_layers = params.n_gpu_layers;
}
mparams.main_gpu = params.main_gpu;
mparams.split_mode = params.split_mode;
mparams.tensor_split = params.tensor_split;
mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock;
if (params.kv_overrides.empty()) {
mparams.kv_overrides = NULL;
} else {
GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
mparams.kv_overrides = params.kv_overrides.data();
}
return mparams;
}
static ggml_type kv_cache_type_from_str(const std::string & s) {
if (s == "f32") {
return GGML_TYPE_F32;
}
if (s == "f16") {
return GGML_TYPE_F16;
}
if (s == "q8_0") {
return GGML_TYPE_Q8_0;
}
if (s == "q4_0") {
return GGML_TYPE_Q4_0;
}
if (s == "q4_1") {
return GGML_TYPE_Q4_1;
}
if (s == "q5_0") {
return GGML_TYPE_Q5_0;
}
if (s == "q5_1") {
return GGML_TYPE_Q5_1;
}
throw std::runtime_error("Invalid cache type: " + s);
}
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
auto cparams = llama_context_default_params();
cparams.n_ctx = params.n_ctx;
cparams.n_batch = params.n_batch;
cparams.n_parallel = params.n_parallel;
cparams.n_threads = params.n_threads;
cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
cparams.seed = params.seed;
cparams.logits_all = params.logits_all;
cparams.embeddings = params.embedding;
cparams.rope_scaling_type = params.rope_scaling_type;
cparams.rope_freq_base = params.rope_freq_base;
cparams.rope_freq_scale = params.rope_freq_scale;
cparams.yarn_ext_factor = params.yarn_ext_factor;
cparams.yarn_attn_factor = params.yarn_attn_factor;
cparams.yarn_beta_fast = params.yarn_beta_fast;
cparams.yarn_beta_slow = params.yarn_beta_slow;
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
cparams.pooling_type = params.pooling_type;
cparams.defrag_thold = params.defrag_thold;
cparams.offload_kqv = !params.no_kv_offload;
cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
return cparams;
}
void llama_batch_clear(struct llama_batch & batch) {
batch.n_tokens = 0;
}
void llama_batch_add(
struct llama_batch & batch,
llama_token id,
llama_pos pos,
const std::vector<llama_seq_id> & seq_ids,
bool logits) {
batch.token [batch.n_tokens] = id;
batch.pos [batch.n_tokens] = pos;
batch.n_seq_id[batch.n_tokens] = seq_ids.size();
for (size_t i = 0; i < seq_ids.size(); ++i) {
batch.seq_id[batch.n_tokens][i] = seq_ids[i];
}
batch.logits [batch.n_tokens] = logits;
batch.n_tokens++;
}
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
auto mparams = llama_model_params_from_gpt_params(params);
llama_model * model = llama_load_model_from_file(params.model.c_str(), mparams);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
return std::make_tuple(nullptr, nullptr);
}
auto cparams = llama_context_params_from_gpt_params(params);
llama_context * lctx = llama_new_context_with_model(model, cparams);
if (lctx == NULL) {
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
llama_free_model(model);
return std::make_tuple(nullptr, nullptr);
}
for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
const std::string& lora_adapter = std::get<0>(params.lora_adapter[i]);
float lora_scale = std::get<1>(params.lora_adapter[i]);
int err = llama_model_apply_lora_from_file(model,
lora_adapter.c_str(),
lora_scale,
((i > 0) || params.lora_base.empty())
? NULL
: params.lora_base.c_str(),
params.n_threads);
if (err != 0) {
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
llama_free(lctx);
llama_free_model(model);
return std::make_tuple(nullptr, nullptr);
}
}
if (params.ignore_eos) {
params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
}
{
LOG("warming up the model with an empty run\n");
std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), };
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
llama_kv_cache_clear(lctx);
llama_reset_timings(lctx);
}
return std::make_tuple(model, lctx);
}
//
// Vocab utils
//
std::vector<llama_token> llama_tokenize(
const struct llama_context * ctx,
const std::string & text,
bool add_bos,
bool special) {
return llama_tokenize(llama_get_model(ctx), text, add_bos, special);
}
std::vector<llama_token> llama_tokenize(
const struct llama_model * model,
const std::string & text,
bool add_bos,
bool special) {
// upper limit for the number of tokens
int n_tokens = text.length() + add_bos;
std::vector<llama_token> result(n_tokens);
n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
}
return result;
}
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
std::vector<char> result(8, 0);
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
}
return std::string(result.data(), result.size());
}
std::string llama_detokenize_spm(llama_context * ctx, const std::vector<llama_token> & tokens) {
const llama_token bos_id = llama_token_bos(llama_get_model(ctx));
std::string piece;
std::string result;
for (size_t i = 0; i < tokens.size(); ++i) {
piece = llama_token_to_piece(ctx, tokens[i]);
// remove the leading space of the first non-BOS token
if (((tokens[0] == bos_id && i == 1) || (tokens[0] != bos_id && i == 0)) && piece[0] == ' ') {
piece = piece.substr(1);
}
result += piece;
}
return result;
}
std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_token> & tokens) {
std::string piece;
std::string result;
for (size_t i = 0; i < tokens.size(); ++i) {
piece = llama_token_to_piece(ctx, tokens[i]);
result += piece;
}
// NOTE: the original tokenizer decodes bytes after collecting the pieces.
return result;
}
bool llama_should_add_bos_token(const llama_model * model) {
const int add_bos = llama_add_bos_token(model);
return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
}
//
// YAML utils
//
// returns true if successful, false otherwise
bool create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
std::wstring wpath = converter.from_bytes(path);
// if the path already exists, check whether it's a directory
const DWORD attributes = GetFileAttributesW(wpath.c_str());
if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
return true;
}
size_t pos_slash = 0;
// process path from front to back, procedurally creating directories
while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
const std::wstring subpath = wpath.substr(0, pos_slash);
const wchar_t * test = subpath.c_str();
const bool success = CreateDirectoryW(test, NULL);
if (!success) {
const DWORD error = GetLastError();
// if the path already exists, ensure that it's a directory
if (error == ERROR_ALREADY_EXISTS) {
const DWORD attributes = GetFileAttributesW(subpath.c_str());
if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
return false;
}
} else {
return false;
}
}
pos_slash += 1;
}
return true;
#else
// if the path already exists, check whether it's a directory
struct stat info;
if (stat(path.c_str(), &info) == 0) {
return S_ISDIR(info.st_mode);
}
size_t pos_slash = 1; // skip leading slashes for directory creation
// process path from front to back, procedurally creating directories
while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
const std::string subpath = path.substr(0, pos_slash);
struct stat info;
// if the path already exists, ensure that it's a directory
if (stat(subpath.c_str(), &info) == 0) {
if (!S_ISDIR(info.st_mode)) {
return false;
}
} else {
// create parent directories
const int ret = mkdir(subpath.c_str(), 0755);
if (ret != 0) {
return false;
}
}
pos_slash += 1;
}
return true;
#endif // _WIN32
}
void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data) {
if (data.empty()) {
fprintf(stream, "%s:\n", prop_name);
return;
}
fprintf(stream, "%s: [", prop_name);
for (size_t i = 0; i < data.size() - 1; ++i) {
fprintf(stream, "%e, ", data[i]);
}
fprintf(stream, "%e]\n", data.back());
}
void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data) {
if (data.empty()) {
fprintf(stream, "%s:\n", prop_name);
return;
}
fprintf(stream, "%s: [", prop_name);
for (size_t i = 0; i < data.size() - 1; ++i) {
fprintf(stream, "%d, ", data[i]);
}
fprintf(stream, "%d]\n", data.back());
}
void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data) {
std::string data_str(data == NULL ? "" : data);
if (data_str.empty()) {
fprintf(stream, "%s:\n", prop_name);
return;
}
size_t pos_start = 0;
size_t pos_found = 0;
if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) {
data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
data_str = "\"" + data_str + "\"";
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
return;
}
if (data_str.find('\n') == std::string::npos) {
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
return;
}
fprintf(stream, "%s: |\n", prop_name);
while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
pos_start = pos_found + 1;
}
}
std::string get_sortable_timestamp() {
using clock = std::chrono::system_clock;
const clock::time_point current_time = clock::now();
const time_t as_time_t = clock::to_time_t(current_time);
char timestamp_no_ns[100];
std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));
const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
current_time.time_since_epoch() % 1000000000).count();
char timestamp_ns[11];
snprintf(timestamp_ns, 11, "%09" PRId64, ns);
return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
}
void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
const llama_sampling_params & sparams = params.sparams;
fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false");
fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false");
fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false");
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false");
#ifdef NDEBUG
fprintf(stream, "debug: false\n");
#else
fprintf(stream, "debug: true\n");
#endif // NDEBUG
fprintf(stream, "model_desc: %s\n", model_desc);
fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
#ifdef __OPTIMIZE__
fprintf(stream, "optimize: true\n");
#else
fprintf(stream, "optimize: false\n");
#endif // __OPTIMIZE__
fprintf(stream, "time: %s\n", timestamp.c_str());
fprintf(stream, "\n");
fprintf(stream, "###############\n");
fprintf(stream, "# User Inputs #\n");
fprintf(stream, "###############\n");
fprintf(stream, "\n");
fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
dump_string_yaml_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str());
fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale);
fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
dump_string_yaml_multiline(stream, "grammar", sparams.grammar.c_str());
fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx)));
const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY;
fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str());
fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
dump_string_yaml_multiline(stream, "in_suffix", params.input_prefix.c_str());
fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false");
fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
fprintf(stream, "logit_bias:\n");
for (std::pair<llama_token, float> lb : sparams.logit_bias) {
if (ignore_eos && lb.first == logit_bias_eos->first) {
continue;
}
fprintf(stream, " %d: %f", lb.first, lb.second);
}
fprintf(stream, "lora:\n");
for (std::tuple<std::string, float> la : params.lora_adapter) {
if (std::get<1>(la) != 1.0f) {
continue;
}
fprintf(stream, " - %s\n", std::get<0>(la).c_str());
}
fprintf(stream, "lora_scaled:\n");
for (std::tuple<std::string, float> la : params.lora_adapter) {
if (std::get<1>(la) == 1.0f) {
continue;
}
fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la));
}
fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep);
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str());
fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false");
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str());
fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens);
fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false");
fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
fprintf(stream, "reverse_prompt:\n");
for (std::string ap : params.antiprompt) {
size_t pos = 0;
while ((pos = ap.find('\n', pos)) != std::string::npos) {
ap.replace(pos, 1, "\\n");
pos += 1;
}
fprintf(stream, " - %s\n", ap.c_str());
}
fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed);
fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
fprintf(stream, "threads: %d # default: %u\n", params.n_threads, std::thread::hardware_concurrency());
fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
}
//
// KV cache utils
//
void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size) {
static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
view.n_cells, view.n_max_seq, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
llama_kv_cache_view_cell * c_curr = view.cells;
llama_seq_id * cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
if (i % row_size == 0) {
printf("\n%5d: ", i);
}
int seq_count = 0;
for (int j = 0; j < view.n_max_seq; j++) {
if (cs_curr[j] >= 0) { seq_count++; }
}
putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
}
printf("\n=== Done dumping\n");
}
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size) {
static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
view.n_cells, view.n_max_seq, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
std::unordered_map<llama_seq_id, size_t> seqs;
llama_kv_cache_view_cell * c_curr = view.cells;
llama_seq_id * cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
for (int j = 0; j < view.n_max_seq; j++) {
if (cs_curr[j] < 0) { continue; }
if (seqs.find(cs_curr[j]) == seqs.end()) {
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
const size_t sz = seqs.size();
seqs[cs_curr[j]] = sz;
}
}
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
}
printf("=== Sequence legend: ");
for (const auto & it : seqs) {
printf("%zu=%d, ", it.second, it.first);
}
printf("'+'=other sequence ids");
c_curr = view.cells;
cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
if (i % row_size == 0) {
printf("\n%5d: ", i);
}
for (int j = 0; j < view.n_max_seq; j++) {
if (cs_curr[j] >= 0) {
const auto & it = seqs.find(cs_curr[j]);
putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
} else {
putchar('.');
}
}
putchar(' ');
}
printf("\n=== Done dumping\n");
}