mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-14 22:38:58 +01:00
42c76d1358
* Introduce ggml_compute_threadpool - OpenMP functional: check - Vanilla ggml functional: Check - ggml w/threadpool functional: Check - OpenMP no regression: No glaring problems - Vanilla ggml no regression: No glaring problems - ggml w/threadpool no regression: No glaring problems * Minor fixes * fixed use after release bug * fixed a harmless race condition * Fix Android bulid issue * fix more race conditions * fix deadlock for cases where cgraph.n_nodes == 1 and fix --poll case * threadpool: use cpu_get_num_math to set the default number of threadpool threads This way we avoid using E-Cores and Hyperthreaded siblings. * bench: create fresh threadpool for each test For benchmarking it's better to start a fresh pool for each test with the exact number of threads needed for that test. Having larger pools is suboptimal (causes more load, etc). * atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior. * threadpool: make polling the default to match openmp behavior All command line args now allow for setting poll to 0 (false). * threadpool: do not wakeup threads in already paused threadpool * fix potential race condition in check_for_work * threadpool: do not create two threadpools if their params are identical * threadpool: reduce pause/resume/wakeup overhead in common cases We now start threadpool in paused state only if we have two. The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead. * threadpool: add support for hybrid polling poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var. poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ... The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms. We can tune this further as things evolve. * threadpool: reduce the number of barrier required New work is now indicated with an atomic counter that is incremented for each new graph that needs to be computed. This removes the need for extra barrier for clearing the "new_work" and removes the special case for trivial graphs. * threadpool: remove special-casing for disposable threadpools With the efficient hybrid polling there is no need to make disposable pools any different. This simplifies the overall logic and reduces branching. Include n_threads in debug print for disposable threadpool. Declare pause and stop flags as atomic_bool This doesn't actually generate any memory barriers and simply informs the thread sanitizer that these flags can be written & read by different threads without locking. * threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs) This fixes the race condition with very small graphs where the main thread happens to start a new graph while the workers are just about to exit from barriers. * threadpool: use relaxed order for chunk sync Full memory barrier is an overkill for this since each thread works on different chunk * threadpool: remove abort_callback from threadpool state * threadpool: better naming for thread/cpumask releated functions * threadpool: consistent use of int type for n_threads params * threadpool: add support for ggml_threadpool_params_default/init Also removes the need for explicit mask_specified param. all-zero cpumask means use default (usually inherited) cpu affinity mask. * threadpool: move typedef into ggml.h * threadpool: fix apply_priority() function name * threadpool: fix swift wrapper errors due to n_threads int type cleanup * threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled * threadpool: replace checks for compute_thread ret code with proper status check * threadpool: simplify threadpool init logic and fix main thread affinity application Most of the init code is now exactly the same between threadpool and openmp. * threadpool: update threadpool resume/pause function names * threadpool: enable openmp by default for now * threadpool: don't forget to free workers state when omp is enabled * threadpool: avoid updating process priority on the platforms that do not require it On Windows we need to change overall process priority class in order to set thread priorities, but on Linux, Mac, etc we do not need to touch the overall process settings. * threadpool: update calling thread prio and affinity only at start/resume This avoids extra syscalls for each graph_compute() * llama-bench: turn threadpool params into vectors, add output headers, etc * llama-bench: add support for cool off between tests --delay This helps for long running tests on platforms that are thermally limited (phones, laptops, etc). --delay (disabled by default) introduces the sleep for N seconds before starting each test. * threadpool: move process priority setting into the apps (bench and cli) This avoids changing the overall process priority on Windows for the apps that use ggml/llama.cpp directy. * threadpool: move all pause/resume logic into ggml * threadpool: futher api cleanup and prep for future refactoring All threadpool related functions and structs use ggml_threadpool prefix. * threadpool: minor indent fixes * threadpool: improve setprioty error message * Update examples/llama-bench/llama-bench.cpp Co-authored-by: slaren <slarengh@gmail.com> * threadpool: fix indent in set_threadpool call * use int32_t for n_thread type in public llama.cpp API * threadpool: use _new and _free instead of _create and _release * fix two more public APIs to use int32_t for n_threads * build: set _GNU_SOURCE for Adroid --------- Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com> Co-authored-by: fmz <quic_fzaghlou@quic.com> Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
330 lines
13 KiB
C++
330 lines
13 KiB
C++
#include "ggml.h"
|
|
#include "log.h"
|
|
#include "common.h"
|
|
#include "clip.h"
|
|
#include "llava.h"
|
|
#include "llama.h"
|
|
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <vector>
|
|
|
|
struct llava_context {
|
|
struct clip_ctx * ctx_clip = NULL;
|
|
struct llama_context * ctx_llama = NULL;
|
|
struct llama_model * model = NULL;
|
|
};
|
|
|
|
static void show_additional_info(int /*argc*/, char ** argv) {
|
|
LOG_TEE("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
|
LOG_TEE(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
|
}
|
|
|
|
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) {
|
|
(void) level;
|
|
(void) user_data;
|
|
LOG_TEE("%s", text);
|
|
}
|
|
|
|
static struct llama_model * llava_init(gpt_params * params) {
|
|
llama_backend_init();
|
|
llama_numa_init(params->numa);
|
|
|
|
llama_model_params model_params = llama_model_params_from_gpt_params(*params);
|
|
|
|
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
|
|
if (model == NULL) {
|
|
LOG_TEE("%s: error: unable to load model\n" , __func__);
|
|
return NULL;
|
|
}
|
|
return model;
|
|
}
|
|
|
|
static struct llava_context * llava_init_context(gpt_params * params, llama_model * model) {
|
|
auto prompt = params->prompt;
|
|
if (prompt.empty()) {
|
|
prompt = "describe the image in detail.";
|
|
}
|
|
|
|
llama_context_params ctx_params = llama_context_params_from_gpt_params(*params);
|
|
if (params->n_ctx < 2048) {
|
|
// warn user here, "Image processing requires at least 2048 context, setting context to 2048"
|
|
LOG_TEE("%s: warn: Image processing requires at least 2048 context, setting context to 2048\n" , __func__);
|
|
ctx_params.n_ctx = 2048;
|
|
} else {
|
|
ctx_params.n_ctx = params->n_ctx;
|
|
}
|
|
|
|
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
|
|
|
if (ctx_llama == NULL) {
|
|
LOG_TEE("%s: error: failed to create the llama_context\n" , __func__);
|
|
return NULL;
|
|
}
|
|
|
|
auto ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
|
|
|
|
ctx_llava->ctx_llama = ctx_llama;
|
|
ctx_llava->model = model;
|
|
return ctx_llava;
|
|
}
|
|
|
|
static void llava_free(struct llava_context * ctx_llava) {
|
|
if (ctx_llava->ctx_clip) {
|
|
clip_free(ctx_llava->ctx_clip);
|
|
ctx_llava->ctx_clip = NULL;
|
|
}
|
|
|
|
llama_free(ctx_llava->ctx_llama);
|
|
llama_free_model(ctx_llava->model);
|
|
llama_backend_free();
|
|
}
|
|
|
|
static struct clip_ctx * clip_init_context(gpt_params * params) {
|
|
const char * clip_path = params->mmproj.c_str();
|
|
|
|
auto prompt = params->prompt;
|
|
if (prompt.empty()) {
|
|
prompt = "describe the image in detail.";
|
|
}
|
|
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
|
return ctx_clip;
|
|
}
|
|
|
|
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
|
|
int N = (int) tokens.size();
|
|
for (int i = 0; i < N; i += n_batch) {
|
|
int n_eval = (int) tokens.size() - i;
|
|
if (n_eval > n_batch) {
|
|
n_eval = n_batch;
|
|
}
|
|
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
|
|
LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
|
|
return false;
|
|
}
|
|
*n_past += n_eval;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
|
|
std::vector<llama_token> tokens;
|
|
tokens.push_back(id);
|
|
return eval_tokens(ctx_llama, tokens, 1, n_past);
|
|
}
|
|
|
|
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
|
|
std::string str2 = str;
|
|
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
|
|
return eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
|
}
|
|
|
|
static void process_eval_image_embed(struct llava_context * ctx_llava, const struct llava_image_embed * embeds, int n_batch, int * n_past, int idx) {
|
|
float * image_embed = (float *)malloc(clip_embd_nbytes(ctx_llava->ctx_clip));
|
|
std::memcpy(image_embed, embeds->embed + idx * clip_n_patches(ctx_llava->ctx_clip) * clip_n_mmproj_embd(ctx_llava->ctx_clip), clip_embd_nbytes(ctx_llava->ctx_clip));
|
|
|
|
auto slice_embed = (llava_image_embed*)malloc(sizeof(llava_image_embed));
|
|
slice_embed->embed = image_embed;
|
|
slice_embed->n_image_pos = clip_n_patches(ctx_llava->ctx_clip);
|
|
llava_eval_image_embed(ctx_llava->ctx_llama, slice_embed, n_batch, n_past);
|
|
llava_image_embed_free(slice_embed);
|
|
}
|
|
|
|
static void process_image(struct llava_context * ctx_llava, struct llava_image_embed * embeds, gpt_params * params, int &n_past) {
|
|
std::string system_prompt;
|
|
int idx = 0;
|
|
int num_image_embeds = embeds->n_image_pos / clip_n_patches(ctx_llava->ctx_clip);
|
|
int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip);
|
|
if (has_minicpmv_projector == 2) {
|
|
system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n";
|
|
}
|
|
else if (has_minicpmv_projector == 3) {
|
|
system_prompt = "<|im_start|>user\n";
|
|
}
|
|
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
|
|
eval_string(ctx_llava->ctx_llama, (system_prompt+"<image>").c_str(), params->n_batch, &n_past, false);
|
|
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
|
|
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
|
if (num_image_embeds > 1) {
|
|
size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
|
|
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
|
|
for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
|
|
for (size_t j = 0; j < num_image_embeds_col; ++j) {
|
|
eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
|
|
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
|
|
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
|
if (j == num_image_embeds_col - 1) {
|
|
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
|
|
}
|
|
}
|
|
}
|
|
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
|
|
}
|
|
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
|
|
}
|
|
|
|
static const char * sample(struct llama_sampling_context * ctx_sampling,
|
|
struct llama_context * ctx_llama,
|
|
int * n_past) {
|
|
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
|
|
llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
|
|
static std::string ret;
|
|
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
|
ret = "</s>";
|
|
} else {
|
|
ret = llama_token_to_piece(ctx_llama, id);
|
|
}
|
|
eval_id(ctx_llama, id, n_past);
|
|
return ret.c_str();
|
|
}
|
|
|
|
static struct llava_context * minicpmv_init(gpt_params * params, const std::string & fname, int &n_past){
|
|
auto ctx_clip = clip_init_context(params);
|
|
auto embeds = llava_image_embed_make_with_filename(ctx_clip, params->cpuparams.n_threads, fname.c_str());
|
|
if (!embeds) {
|
|
std::cerr << "error: failed to load image " << fname << ". Terminating\n\n";
|
|
return NULL;
|
|
}
|
|
|
|
// process the prompt
|
|
if (params->prompt.empty() && params->interactive == false) {
|
|
LOG_TEE("prompt should be given or interactive mode should be on");
|
|
return NULL;
|
|
}
|
|
|
|
auto model = llava_init(params);
|
|
if (model == NULL) {
|
|
fprintf(stderr, "%s: error: failed to init minicpmv model\n", __func__);
|
|
return NULL;
|
|
}
|
|
const int64_t t_llava_init_start_us = ggml_time_us();
|
|
auto ctx_llava = llava_init_context(params, model);
|
|
ctx_llava->ctx_clip = ctx_clip;
|
|
const int64_t t_llava_init_end_us = ggml_time_us();
|
|
float t_llava_init_ms = (t_llava_init_end_us - t_llava_init_start_us) / 1000.0;
|
|
LOG_TEE("\n%s: llava init in %8.2f ms.\n", __func__, t_llava_init_ms);
|
|
|
|
const int64_t t_process_image_start_us = ggml_time_us();
|
|
process_image(ctx_llava, embeds, params, n_past);
|
|
const int64_t t_process_image_end_us = ggml_time_us();
|
|
float t_process_image_ms = (t_process_image_end_us - t_process_image_start_us) / 1000.0;
|
|
LOG_TEE("\n%s: llama process image in %8.2f ms.\n", __func__, t_process_image_ms);
|
|
|
|
llava_image_embed_free(embeds);
|
|
return ctx_llava;
|
|
}
|
|
|
|
static struct llama_sampling_context * llama_init(struct llava_context * ctx_llava, gpt_params * params, std::string prompt, int &n_past, bool is_first = false){
|
|
std::string user_prompt = prompt;
|
|
int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip);
|
|
if (!is_first) {
|
|
if (has_minicpmv_projector == 2) {
|
|
user_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" + prompt;
|
|
}
|
|
else if (has_minicpmv_projector == 3) {
|
|
user_prompt = "<|im_start|>user\n" + prompt;
|
|
}
|
|
}
|
|
|
|
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
|
|
if (has_minicpmv_projector == 2) {
|
|
eval_string(ctx_llava->ctx_llama, "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", params->n_batch, &n_past, false);
|
|
}
|
|
else if (has_minicpmv_projector == 3) {
|
|
eval_string(ctx_llava->ctx_llama, "<|im_end|><|im_start|>assistant\n", params->n_batch, &n_past, false);
|
|
}
|
|
|
|
// generate the response
|
|
|
|
LOG_TEE("\n");
|
|
|
|
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params->sparams);
|
|
return ctx_sampling;
|
|
}
|
|
|
|
static const char * llama_loop(struct llava_context * ctx_llava,struct llama_sampling_context * ctx_sampling, int &n_past){
|
|
|
|
const char * tmp = sample(ctx_sampling, ctx_llava->ctx_llama, &n_past);
|
|
return tmp;
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
ggml_time_init();
|
|
|
|
gpt_params params;
|
|
|
|
if (!gpt_params_parse(argc, argv, params)) {
|
|
show_additional_info(argc, argv);
|
|
return 1;
|
|
}
|
|
|
|
#ifndef LOG_DISABLE_LOGS
|
|
log_set_target(log_filename_generator("llava", "log"));
|
|
LOG_TEE("Log start\n");
|
|
log_dump_cmdline(argc, argv);
|
|
llama_log_set(llama_log_callback_logTee, nullptr);
|
|
#endif // LOG_DISABLE_LOGS
|
|
|
|
if (params.mmproj.empty() || (params.image.empty())) {
|
|
gpt_params_print_usage(argc, argv, params);
|
|
show_additional_info(argc, argv);
|
|
return 1;
|
|
}
|
|
|
|
for (auto & image : params.image) {
|
|
int n_past = 0;
|
|
auto ctx_llava = minicpmv_init(¶ms, image, n_past);
|
|
|
|
if (!params.prompt.empty()) {
|
|
LOG_TEE("<user>%s\n", params.prompt.c_str());
|
|
LOG_TEE("<assistant>");
|
|
auto ctx_sampling = llama_init(ctx_llava, ¶ms, params.prompt.c_str(), n_past, true);
|
|
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
|
|
std::string response = "";
|
|
bool have_tmp = false;
|
|
for (int i = 0; i < max_tgt_len; i++) {
|
|
auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past);
|
|
response += tmp;
|
|
if (strcmp(tmp, "</s>") == 0){
|
|
if(!have_tmp)continue;
|
|
else break;
|
|
}
|
|
if (strstr(tmp, "###")) break; // Yi-VL behavior
|
|
have_tmp = true;
|
|
printf("%s", tmp);
|
|
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
|
|
|
|
fflush(stdout);
|
|
}
|
|
llama_sampling_free(ctx_sampling);
|
|
}else {
|
|
while (true) {
|
|
LOG_TEE("<user>");
|
|
std::string prompt;
|
|
std::getline(std::cin, prompt);
|
|
LOG_TEE("<assistant>");
|
|
auto ctx_sampling = llama_init(ctx_llava, ¶ms, prompt, n_past, true);
|
|
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
|
|
std::string response = "";
|
|
for (int i = 0; i < max_tgt_len; i++) {
|
|
auto tmp = llama_loop(ctx_llava, ctx_sampling, n_past);
|
|
response += tmp;
|
|
if (strcmp(tmp, "</s>") == 0) break;
|
|
if (strstr(tmp, "###")) break; // Yi-VL behavior
|
|
printf("%s", tmp);// mistral llava-1.6
|
|
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
|
|
fflush(stdout);
|
|
}
|
|
llama_sampling_free(ctx_sampling);
|
|
}
|
|
}
|
|
printf("\n");
|
|
llama_print_timings(ctx_llava->ctx_llama);
|
|
|
|
ctx_llava->model = NULL;
|
|
llava_free(ctx_llava);
|
|
}
|
|
|
|
return 0;
|
|
}
|