mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 12:21:40 +01:00
145 lines
5.6 KiB
C++
145 lines
5.6 KiB
C++
#include "ggml.h"
|
|
#include "common.h"
|
|
#include "clip.h"
|
|
#include "llava.h"
|
|
#include "minicpmv_wrapper.h"
|
|
#include "llama.h"
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <vector>
|
|
|
|
struct llama_model * llava_init(gpt_params * params) {
|
|
llama_backend_init();
|
|
llama_numa_init(params->numa);
|
|
|
|
llama_model_params model_params = llama_model_params_from_gpt_params(*params);
|
|
|
|
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
|
|
if (model == NULL) {
|
|
LOG_TEE("%s: error: unable to load model\n" , __func__);
|
|
return NULL;
|
|
}
|
|
return model;
|
|
}
|
|
|
|
struct minicpmv_context * llava_init_context(gpt_params * params, llama_model * model) {
|
|
auto prompt = params->prompt;
|
|
if (prompt.empty()) {
|
|
prompt = "describe the image in detail.";
|
|
}
|
|
|
|
llama_context_params ctx_params = llama_context_params_from_gpt_params(*params);
|
|
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
|
|
|
|
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
|
|
|
if (ctx_llama == NULL) {
|
|
LOG_TEE("%s: error: failed to create the llama_context\n" , __func__);
|
|
return NULL;
|
|
}
|
|
|
|
auto ctx_llava = (struct minicpmv_context *)malloc(sizeof(minicpmv_context));
|
|
|
|
ctx_llava->ctx_llama = ctx_llama;
|
|
ctx_llava->model = model;
|
|
return ctx_llava;
|
|
}
|
|
|
|
void llava_free(struct minicpmv_context * ctx_llava) {
|
|
llama_free(ctx_llava->ctx_llama);
|
|
llama_free_model(ctx_llava->model);
|
|
llama_backend_free();
|
|
}
|
|
|
|
struct clip_ctx * clip_init_context(gpt_params * params) {
|
|
const char * clip_path = params->mmproj.c_str();
|
|
|
|
auto prompt = params->prompt;
|
|
if (prompt.empty()) {
|
|
prompt = "describe the image in detail.";
|
|
}
|
|
std::pair<int, int> load_image_size = std::make_pair(448, 448);
|
|
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1, load_image_size);
|
|
return ctx_clip;
|
|
}
|
|
|
|
struct uhd_image_embed * minicpmv_image_embed(gpt_params * params, const std::string & fname){
|
|
auto ctx_clip = clip_init_context(params);
|
|
auto image_embed_and_slices = llava_image_embed_make_with_filename_uhd(ctx_clip, params->n_threads, fname.c_str());
|
|
if (ctx_clip) {
|
|
clip_free(ctx_clip);
|
|
ctx_clip = NULL;
|
|
}
|
|
return image_embed_and_slices;
|
|
}
|
|
|
|
|
|
bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
|
|
int N = (int) tokens.size();
|
|
for (int i = 0; i < N; i += n_batch) {
|
|
int n_eval = (int) tokens.size() - i;
|
|
if (n_eval > n_batch) {
|
|
n_eval = n_batch;
|
|
}
|
|
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
|
|
LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
|
|
return false;
|
|
}
|
|
*n_past += n_eval;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
|
|
std::vector<llama_token> tokens;
|
|
tokens.push_back(id);
|
|
return eval_tokens(ctx_llama, tokens, 1, n_past);
|
|
}
|
|
|
|
bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
|
|
std::string str2 = str;
|
|
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
|
|
eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
|
return true;
|
|
}
|
|
|
|
void process_image(struct minicpmv_context * ctx_llava, std::vector<std::vector<struct llava_image_embed *>> image_embed_slices, gpt_params * params, int &n_past) {
|
|
std::string system_prompt;
|
|
|
|
system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n";
|
|
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
|
|
eval_string(ctx_llava->ctx_llama, (system_prompt+"<image>").c_str(), params->n_batch, &n_past, false);
|
|
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed_slices[0][0], params->n_batch, &n_past);
|
|
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
|
if (image_embed_slices.size() > 1) {
|
|
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
|
|
for (size_t i = 1; i < image_embed_slices.size(); ++i) {
|
|
for (size_t j = 0; j < image_embed_slices[i].size(); ++j) {
|
|
eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
|
|
llava_eval_image_embed(ctx_llava->ctx_llama, image_embed_slices[i][j], params->n_batch, &n_past);
|
|
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
|
if (j == image_embed_slices[i].size() - 1) {
|
|
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
|
|
}
|
|
}
|
|
}
|
|
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
|
|
|
|
}
|
|
LOG_TEE("%s: image token past: %d\n", __func__, n_past);
|
|
}
|
|
|
|
const char * sample(struct llama_sampling_context * ctx_sampling,
|
|
struct llama_context * ctx_llama,
|
|
int * n_past) {
|
|
const llama_token id = llama_sampling_sample(ctx_sampling, ctx_llama, NULL);
|
|
llama_sampling_accept(ctx_sampling, ctx_llama, id, true);
|
|
static std::string ret;
|
|
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
|
ret = "</s>";
|
|
} else {
|
|
ret = llama_token_to_piece(ctx_llama, id);
|
|
}
|
|
eval_id(ctx_llama, id, n_past);
|
|
return ret.c_str();
|
|
} |