1
0
mirror of https://github.com/ggerganov/llama.cpp.git synced 2025-01-19 00:18:57 +01:00
llama.cpp/examples/llama.swiftui/llama.cpp.swift/LibLlama.swift
jaime-m-p 213701b51a
Detokenizer fixes ()
* Add llama_detokenize():
  - Update header files location
  - UNKNOWN and CONTROL are 'special pieces'
  - Remove space after UNKNOWN and CONTROL
  - Refactor llama_token_to_piece()
  - Add flag: clean_up_tokenization_spaces
  - Symmetric params for llama_tokenize() and llama_detokenize()

* Update and fix tokenizer tests:
  - Using llama_detokenize()
  - Unexpected vocab type as test fail instead of error
    - Useful when automating tests:
    - If you don't know in advance the vocab type
    - Differenciate other loading errors
  - Skip unicode surrogaes and undefined
  - Gracefully exit threads
    - Using exit() is throwing random exceptions
  - Clean old known problematic codepoints
  - Minor: confusing hexadecimal codepoint

* Update bruteforce random tests
  - Add detokenizer checks
  - New generator: ascii_lr_strip
  - New generator: apostrophe
  - Add more vocabs files
  - Detokenize special tokens.
  - Replace errors with '\uFFFD' when detokenizing to 'utf-8'
  - More edge cases
  - Better detokenization results check

* Fix add_space_prefix, set false by default
* Better leading space removal
* Do not remove space when decoding special tokens
* Bugfix: custom regexs splits undefined unicode codepoints
* 'viking' detokenizer clean spaces
2024-07-05 19:01:35 +02:00

342 lines
11 KiB
Swift

import Foundation
import llama
enum LlamaError: Error {
case couldNotInitializeContext
}
func llama_batch_clear(_ batch: inout llama_batch) {
batch.n_tokens = 0
}
func llama_batch_add(_ batch: inout llama_batch, _ id: llama_token, _ pos: llama_pos, _ seq_ids: [llama_seq_id], _ logits: Bool) {
batch.token [Int(batch.n_tokens)] = id
batch.pos [Int(batch.n_tokens)] = pos
batch.n_seq_id[Int(batch.n_tokens)] = Int32(seq_ids.count)
for i in 0..<seq_ids.count {
batch.seq_id[Int(batch.n_tokens)]![Int(i)] = seq_ids[i]
}
batch.logits [Int(batch.n_tokens)] = logits ? 1 : 0
batch.n_tokens += 1
}
actor LlamaContext {
private var model: OpaquePointer
private var context: OpaquePointer
private var batch: llama_batch
private var tokens_list: [llama_token]
/// This variable is used to store temporarily invalid cchars
private var temporary_invalid_cchars: [CChar]
var n_len: Int32 = 64
var n_cur: Int32 = 0
var n_decode: Int32 = 0
init(model: OpaquePointer, context: OpaquePointer) {
self.model = model
self.context = context
self.tokens_list = []
self.batch = llama_batch_init(512, 0, 1)
self.temporary_invalid_cchars = []
}
deinit {
llama_batch_free(batch)
llama_free(context)
llama_free_model(model)
llama_backend_free()
}
static func create_context(path: String) throws -> LlamaContext {
llama_backend_init()
var model_params = llama_model_default_params()
#if targetEnvironment(simulator)
model_params.n_gpu_layers = 0
print("Running on simulator, force use n_gpu_layers = 0")
#endif
let model = llama_load_model_from_file(path, model_params)
guard let model else {
print("Could not load model at \(path)")
throw LlamaError.couldNotInitializeContext
}
let n_threads = max(1, min(8, ProcessInfo.processInfo.processorCount - 2))
print("Using \(n_threads) threads")
var ctx_params = llama_context_default_params()
ctx_params.seed = 1234
ctx_params.n_ctx = 2048
ctx_params.n_threads = UInt32(n_threads)
ctx_params.n_threads_batch = UInt32(n_threads)
let context = llama_new_context_with_model(model, ctx_params)
guard let context else {
print("Could not load context!")
throw LlamaError.couldNotInitializeContext
}
return LlamaContext(model: model, context: context)
}
func model_info() -> String {
let result = UnsafeMutablePointer<Int8>.allocate(capacity: 256)
result.initialize(repeating: Int8(0), count: 256)
defer {
result.deallocate()
}
// TODO: this is probably very stupid way to get the string from C
let nChars = llama_model_desc(model, result, 256)
let bufferPointer = UnsafeBufferPointer(start: result, count: Int(nChars))
var SwiftString = ""
for char in bufferPointer {
SwiftString.append(Character(UnicodeScalar(UInt8(char))))
}
return SwiftString
}
func get_n_tokens() -> Int32 {
return batch.n_tokens;
}
func completion_init(text: String) {
print("attempting to complete \"\(text)\"")
tokens_list = tokenize(text: text, add_bos: true)
temporary_invalid_cchars = []
let n_ctx = llama_n_ctx(context)
let n_kv_req = tokens_list.count + (Int(n_len) - tokens_list.count)
print("\n n_len = \(n_len), n_ctx = \(n_ctx), n_kv_req = \(n_kv_req)")
if n_kv_req > n_ctx {
print("error: n_kv_req > n_ctx, the required KV cache size is not big enough")
}
for id in tokens_list {
print(String(cString: token_to_piece(token: id) + [0]))
}
llama_batch_clear(&batch)
for i1 in 0..<tokens_list.count {
let i = Int(i1)
llama_batch_add(&batch, tokens_list[i], Int32(i), [0], false)
}
batch.logits[Int(batch.n_tokens) - 1] = 1 // true
if llama_decode(context, batch) != 0 {
print("llama_decode() failed")
}
n_cur = batch.n_tokens
}
func completion_loop() -> String {
var new_token_id: llama_token = 0
let n_vocab = llama_n_vocab(model)
let logits = llama_get_logits_ith(context, batch.n_tokens - 1)
var candidates = Array<llama_token_data>()
candidates.reserveCapacity(Int(n_vocab))
for token_id in 0..<n_vocab {
candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
}
candidates.withUnsafeMutableBufferPointer() { buffer in
var candidates_p = llama_token_data_array(data: buffer.baseAddress, size: buffer.count, sorted: false)
new_token_id = llama_sample_token_greedy(context, &candidates_p)
}
if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
print("\n")
let new_token_str = String(cString: temporary_invalid_cchars + [0])
temporary_invalid_cchars.removeAll()
return new_token_str
}
let new_token_cchars = token_to_piece(token: new_token_id)
temporary_invalid_cchars.append(contentsOf: new_token_cchars)
let new_token_str: String
if let string = String(validatingUTF8: temporary_invalid_cchars + [0]) {
temporary_invalid_cchars.removeAll()
new_token_str = string
} else if (0 ..< temporary_invalid_cchars.count).contains(where: {$0 != 0 && String(validatingUTF8: Array(temporary_invalid_cchars.suffix($0)) + [0]) != nil}) {
// in this case, at least the suffix of the temporary_invalid_cchars can be interpreted as UTF8 string
let string = String(cString: temporary_invalid_cchars + [0])
temporary_invalid_cchars.removeAll()
new_token_str = string
} else {
new_token_str = ""
}
print(new_token_str)
// tokens_list.append(new_token_id)
llama_batch_clear(&batch)
llama_batch_add(&batch, new_token_id, n_cur, [0], true)
n_decode += 1
n_cur += 1
if llama_decode(context, batch) != 0 {
print("failed to evaluate llama!")
}
return new_token_str
}
func bench(pp: Int, tg: Int, pl: Int, nr: Int = 1) -> String {
var pp_avg: Double = 0
var tg_avg: Double = 0
var pp_std: Double = 0
var tg_std: Double = 0
for _ in 0..<nr {
// bench prompt processing
llama_batch_clear(&batch)
let n_tokens = pp
for i in 0..<n_tokens {
llama_batch_add(&batch, 0, Int32(i), [0], false)
}
batch.logits[Int(batch.n_tokens) - 1] = 1 // true
llama_kv_cache_clear(context)
let t_pp_start = ggml_time_us()
if llama_decode(context, batch) != 0 {
print("llama_decode() failed during prompt")
}
llama_synchronize(context)
let t_pp_end = ggml_time_us()
// bench text generation
llama_kv_cache_clear(context)
let t_tg_start = ggml_time_us()
for i in 0..<tg {
llama_batch_clear(&batch)
for j in 0..<pl {
llama_batch_add(&batch, 0, Int32(i), [Int32(j)], true)
}
if llama_decode(context, batch) != 0 {
print("llama_decode() failed during text generation")
}
llama_synchronize(context)
}
let t_tg_end = ggml_time_us()
llama_kv_cache_clear(context)
let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0
let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0
let speed_pp = Double(pp) / t_pp
let speed_tg = Double(pl*tg) / t_tg
pp_avg += speed_pp
tg_avg += speed_tg
pp_std += speed_pp * speed_pp
tg_std += speed_tg * speed_tg
print("pp \(speed_pp) t/s, tg \(speed_tg) t/s")
}
pp_avg /= Double(nr)
tg_avg /= Double(nr)
if nr > 1 {
pp_std = sqrt(pp_std / Double(nr - 1) - pp_avg * pp_avg * Double(nr) / Double(nr - 1))
tg_std = sqrt(tg_std / Double(nr - 1) - tg_avg * tg_avg * Double(nr) / Double(nr - 1))
} else {
pp_std = 0
tg_std = 0
}
let model_desc = model_info();
let model_size = String(format: "%.2f GiB", Double(llama_model_size(model)) / 1024.0 / 1024.0 / 1024.0);
let model_n_params = String(format: "%.2f B", Double(llama_model_n_params(model)) / 1e9);
let backend = "Metal";
let pp_avg_str = String(format: "%.2f", pp_avg);
let tg_avg_str = String(format: "%.2f", tg_avg);
let pp_std_str = String(format: "%.2f", pp_std);
let tg_std_str = String(format: "%.2f", tg_std);
var result = ""
result += String("| model | size | params | backend | test | t/s |\n")
result += String("| --- | --- | --- | --- | --- | --- |\n")
result += String("| \(model_desc) | \(model_size) | \(model_n_params) | \(backend) | pp \(pp) | \(pp_avg_str) ± \(pp_std_str) |\n")
result += String("| \(model_desc) | \(model_size) | \(model_n_params) | \(backend) | tg \(tg) | \(tg_avg_str) ± \(tg_std_str) |\n")
return result;
}
func clear() {
tokens_list.removeAll()
temporary_invalid_cchars.removeAll()
llama_kv_cache_clear(context)
}
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
let utf8Count = text.utf8.count
let n_tokens = utf8Count + (add_bos ? 1 : 0) + 1
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, false)
var swiftTokens: [llama_token] = []
for i in 0..<tokenCount {
swiftTokens.append(tokens[Int(i)])
}
tokens.deallocate()
return swiftTokens
}
/// - note: The result does not contain null-terminator
private func token_to_piece(token: llama_token) -> [CChar] {
let result = UnsafeMutablePointer<Int8>.allocate(capacity: 8)
result.initialize(repeating: Int8(0), count: 8)
defer {
result.deallocate()
}
let nTokens = llama_token_to_piece(model, token, result, 8, 0, false)
if nTokens < 0 {
let newResult = UnsafeMutablePointer<Int8>.allocate(capacity: Int(-nTokens))
newResult.initialize(repeating: Int8(0), count: Int(-nTokens))
defer {
newResult.deallocate()
}
let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens, 0, false)
let bufferPointer = UnsafeBufferPointer(start: newResult, count: Int(nNewTokens))
return Array(bufferPointer)
} else {
let bufferPointer = UnsafeBufferPointer(start: result, count: Int(nTokens))
return Array(bufferPointer)
}
}
}