mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-19 08:20:10 +01:00
e0429d38e4
* convert-new.py : output gguf (WIP) * convert-new.py : add gguf key-value pairs * llama : add hparams.ctx_train + no longer print ftype * convert-new.py : minor fixes * convert-new.py : vocab-only option should work now * llama : fix tokenizer to use llama_char_to_byte * tests : add new ggml-vocab-llama.gguf * convert-new.py : tensor name mapping * convert-new.py : add map for skipping tensor serialization * convert-new.py : convert script now works * gguf.py : pick some of the refactoring from #2644 * convert-new.py : minor fixes
132 lines
5.0 KiB
C++
132 lines
5.0 KiB
C++
#define LLAMA_API_CPP // TODO: eliminate me
|
|
#include "llama.h"
|
|
|
|
#include <cstdio>
|
|
#include <string>
|
|
#include <map>
|
|
#include <vector>
|
|
|
|
static std::string unescape_whitespace(llama_context* ctx, const std::vector<llama_token>& tokens) {
|
|
std::string result;
|
|
for (size_t i = 0; i < tokens.size(); ++i) {
|
|
result += llama_token_to_str(ctx, tokens[i]);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static const std::map<std::string, std::vector<llama_token>> & k_tests() {
|
|
static std::map<std::string, std::vector<llama_token>> _k_tests = {
|
|
{ " ", {1, 259, }, },
|
|
{ "\t", { 1, 29871, 12, }, },
|
|
{ "\n", { 1, 29871, 13, }, },
|
|
{ "\t\n", { 1, 29871, 12, 13, }, },
|
|
{ "Hello world", { 1, 15043, 3186, }, },
|
|
{ " Hello world", { 1, 29871, 15043, 3186, }, },
|
|
{ "Hello World", { 1, 15043, 2787, }, },
|
|
{ " Hello World", { 1, 29871, 15043, 2787, }, },
|
|
{ " Hello World!", { 1, 29871, 15043, 2787, 29991, }, },
|
|
{ " this is 🦙.cpp", { 1, 29871, 445, 338, 29871, 243, 162, 169, 156, 29889, 8223, }, },
|
|
{ "w048 7tuijk dsdfhu", { 1, 281, 29900, 29946, 29947, 29871, 29955, 9161, 13535, 18031, 2176, 6905, }, },
|
|
{ "нещо на Български", { 1, 1538, 4851, 665, 1386, 29713, 1305, }, },
|
|
{ "កាន់តែពិសេសអាចខលចេញ", { 1, 29871, 31849, 31324, 31934, 228, 162, 142, 228, 161,
|
|
146, 228, 162, 133, 228, 161, 153, 228, 161, 186,
|
|
31708, 228, 162, 132, 31708, 228, 161, 165, 31324, 228,
|
|
161, 136, 228, 161, 132, 228, 161, 158, 228, 161,
|
|
136, 228, 162, 132, 228, 161, 140, }, },
|
|
{ "🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
|
|
{ 1, 29871, 243, 162, 157, 131, 313, 8945, 29897, 29871,
|
|
243, 162, 155, 185, 30722, 243, 162, 143, 174, 30598,
|
|
313, 20787, 953, 3848, 275, 16125, 630, 29897, 29871, 31681,
|
|
313, 6194, 953, 29877, 2397, 393, 756, 967, 1914, 5993, 29897, }, },
|
|
};
|
|
|
|
return _k_tests;
|
|
};
|
|
|
|
int main(int argc, char **argv) {
|
|
if (argc < 2) {
|
|
fprintf(stderr, "Usage: %s <vocab-file>\n", argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
const std::string fname = argv[1];
|
|
|
|
fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str());
|
|
|
|
llama_model * model;
|
|
llama_context * ctx;
|
|
|
|
llama_backend_init(false);
|
|
|
|
// load the vocab
|
|
{
|
|
auto lparams = llama_context_default_params();
|
|
|
|
lparams.vocab_only = true;
|
|
|
|
model = llama_load_model_from_file(fname.c_str(), lparams);
|
|
|
|
if (model == NULL) {
|
|
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
|
return 1;
|
|
}
|
|
|
|
ctx = llama_new_context_with_model(model, lparams);
|
|
|
|
if (ctx == NULL) {
|
|
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
|
llama_free_model(model);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
const int n_vocab = llama_n_vocab(ctx);
|
|
|
|
if (n_vocab != 32000) {
|
|
fprintf(stderr, "%s : expected 32000 tokens, got %d\n", __func__, n_vocab);
|
|
llama_free_model(model);
|
|
llama_free(ctx);
|
|
return 2;
|
|
}
|
|
|
|
bool success = true;
|
|
|
|
for (const auto & test_kv : k_tests()) {
|
|
std::vector<llama_token> res = llama_tokenize(ctx, test_kv.first, true);
|
|
fprintf(stderr, "%s : '%s' tokenized to '%s'\n",
|
|
__func__, test_kv.first.c_str(), unescape_whitespace(ctx, res).c_str());
|
|
|
|
bool correct = res.size() == test_kv.second.size();
|
|
|
|
for (int i = 0; i < (int) res.size() && correct; ++i) {
|
|
if (res[i] != test_kv.second[i]) {
|
|
correct = false;
|
|
}
|
|
}
|
|
|
|
if (!correct) {
|
|
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str());
|
|
fprintf(stderr, "%s : detokenized to: '%s'\n", __func__, unescape_whitespace(ctx, test_kv.second).c_str());
|
|
fprintf(stderr, "%s : expected tokens: ", __func__);
|
|
for (const auto & t : test_kv.second) {
|
|
fprintf(stderr, "%6d, ", t);
|
|
}
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "%s : got tokens: ", __func__);
|
|
for (const auto & t : res) {
|
|
fprintf(stderr, "%6d, ", t);
|
|
}
|
|
fprintf(stderr, "\n");
|
|
|
|
success = false;
|
|
}
|
|
}
|
|
|
|
llama_free_model(model);
|
|
llama_free(ctx);
|
|
|
|
llama_backend_free();
|
|
|
|
return success ? 0 : 3;
|
|
}
|