mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 06:39:25 +01:00
c837981bba
* add phi2 tokenizer * add phi name to convert_hf_to_gguf_update.py * make tokenizer_pre consistent; llama.cpp work
372 lines
16 KiB
Python
Executable File
372 lines
16 KiB
Python
Executable File
#!/usr/bin/env python3
|
||
# -*- coding: utf-8 -*-
|
||
|
||
# This script downloads the tokenizer models of the specified models from Huggingface and
|
||
# generates the get_vocab_base_pre() function for convert_hf_to_gguf.py
|
||
#
|
||
# This is necessary in order to analyze the type of pre-tokenizer used by the model and
|
||
# provide the necessary information to llama.cpp via the GGUF header in order to implement
|
||
# the same pre-tokenizer.
|
||
#
|
||
# ref: https://github.com/ggerganov/llama.cpp/pull/6920
|
||
#
|
||
# Instructions:
|
||
#
|
||
# - Add a new model to the "models" list
|
||
# - Run the script with your huggingface token:
|
||
#
|
||
# python3 convert_hf_to_gguf_update.py <huggingface_token>
|
||
#
|
||
# - Copy-paste the generated get_vocab_base_pre() function into convert_hf_to_gguf.py
|
||
# - Update llama.cpp with the new pre-tokenizer if necessary
|
||
#
|
||
# TODO: generate tokenizer tests for llama.cpp
|
||
#
|
||
|
||
import logging
|
||
import os
|
||
import pathlib
|
||
import re
|
||
|
||
import requests
|
||
import sys
|
||
import json
|
||
import shutil
|
||
|
||
from hashlib import sha256
|
||
from enum import IntEnum, auto
|
||
from transformers import AutoTokenizer
|
||
|
||
logging.basicConfig(level=logging.DEBUG)
|
||
logger = logging.getLogger("convert_hf_to_gguf_update")
|
||
sess = requests.Session()
|
||
|
||
|
||
class TOKENIZER_TYPE(IntEnum):
|
||
SPM = auto()
|
||
BPE = auto()
|
||
WPM = auto()
|
||
UGM = auto()
|
||
|
||
|
||
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
|
||
# will be updated with time - contributions welcome
|
||
CHK_TXT = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
|
||
|
||
if len(sys.argv) == 2:
|
||
token = sys.argv[1]
|
||
if not token.startswith("hf_"):
|
||
logger.info("Huggingface token seems invalid")
|
||
logger.info("Usage: python convert_hf_to_gguf_update.py <huggingface_token>")
|
||
sys.exit(1)
|
||
else:
|
||
logger.info("Usage: python convert_hf_to_gguf_update.py <huggingface_token>")
|
||
sys.exit(1)
|
||
|
||
# TODO: add models here, base models preferred
|
||
models = [
|
||
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
|
||
{"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
|
||
{"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
|
||
{"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
|
||
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
|
||
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
|
||
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
|
||
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
|
||
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
|
||
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
|
||
{"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", },
|
||
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
|
||
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
|
||
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
|
||
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
|
||
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
|
||
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
|
||
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
|
||
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
|
||
{"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", },
|
||
{"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", },
|
||
{"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", },
|
||
{"name": "viking", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, # Also used for Viking 13B and 33B
|
||
{"name": "gemma", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2b", },
|
||
{"name": "gemma-2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2-9b", },
|
||
{"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", },
|
||
{"name": "t5", "tokt": TOKENIZER_TYPE.UGM, "repo": "https://huggingface.co/google-t5/t5-small", },
|
||
{"name": "codeshell", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/WisdomShell/CodeShell-7B", },
|
||
{"name": "tekken", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistralai/Mistral-Nemo-Base-2407", },
|
||
{"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", },
|
||
{'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", },
|
||
{'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", },
|
||
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
|
||
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
|
||
]
|
||
|
||
|
||
def download_file_with_auth(url, token, save_path):
|
||
headers = {"Authorization": f"Bearer {token}"}
|
||
response = sess.get(url, headers=headers)
|
||
response.raise_for_status()
|
||
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
||
with open(save_path, 'wb') as downloaded_file:
|
||
downloaded_file.write(response.content)
|
||
logger.info(f"File {save_path} downloaded successfully")
|
||
|
||
|
||
def download_model(model):
|
||
name = model["name"]
|
||
repo = model["repo"]
|
||
tokt = model["tokt"]
|
||
|
||
os.makedirs(f"models/tokenizers/{name}", exist_ok=True)
|
||
|
||
files = ["config.json", "tokenizer.json", "tokenizer_config.json"]
|
||
|
||
if tokt == TOKENIZER_TYPE.SPM:
|
||
files.append("tokenizer.model")
|
||
|
||
if tokt == TOKENIZER_TYPE.UGM:
|
||
files.append("spiece.model")
|
||
|
||
if os.path.isdir(repo):
|
||
# If repo is a path on the file system, copy the directory
|
||
for file in files:
|
||
src_path = os.path.join(repo, file)
|
||
dst_path = f"models/tokenizers/{name}/{file}"
|
||
if os.path.isfile(dst_path):
|
||
logger.info(f"{name}: File {dst_path} already exists - skipping")
|
||
continue
|
||
if os.path.isfile(src_path):
|
||
shutil.copy2(src_path, dst_path)
|
||
logger.info(f"{name}: Copied {src_path} to {dst_path}")
|
||
else:
|
||
logger.warning(f"{name}: Source file {src_path} does not exist")
|
||
else:
|
||
# If repo is a URL, download the files
|
||
for file in files:
|
||
save_path = f"models/tokenizers/{name}/{file}"
|
||
if os.path.isfile(save_path):
|
||
logger.info(f"{name}: File {save_path} already exists - skipping")
|
||
continue
|
||
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
|
||
|
||
|
||
for model in models:
|
||
try:
|
||
download_model(model)
|
||
except Exception as e:
|
||
logger.error(f"Failed to download model {model['name']}. Error: {e}")
|
||
|
||
|
||
# generate the source code for the convert_hf_to_gguf.py:get_vocab_base_pre() function:
|
||
|
||
src_ifs = ""
|
||
for model in models:
|
||
name = model["name"]
|
||
tokt = model["tokt"]
|
||
|
||
if tokt == TOKENIZER_TYPE.SPM or tokt == TOKENIZER_TYPE.UGM:
|
||
continue
|
||
|
||
# Skip if the tokenizer folder does not exist or there are other download issues previously
|
||
if not os.path.exists(f"models/tokenizers/{name}"):
|
||
logger.warning(f"Directory for tokenizer {name} not found. Skipping...")
|
||
continue
|
||
|
||
# create the tokenizer
|
||
try:
|
||
if name == "t5":
|
||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
|
||
else:
|
||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
|
||
except OSError as e:
|
||
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
|
||
continue # Skip to the next model if the tokenizer can't be loaded
|
||
|
||
chktok = tokenizer.encode(CHK_TXT)
|
||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||
|
||
logger.info(f"model: {name}")
|
||
logger.info(f"tokt: {tokt}")
|
||
logger.info(f"repo: {model['repo']}")
|
||
logger.info(f"chktok: {chktok}")
|
||
logger.info(f"chkhsh: {chkhsh}")
|
||
|
||
# print the "pre_tokenizer" content from the tokenizer.json
|
||
with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f:
|
||
cfg = json.load(f)
|
||
normalizer = cfg["normalizer"]
|
||
logger.info("normalizer: " + json.dumps(normalizer, indent=4))
|
||
pre_tokenizer = cfg["pre_tokenizer"]
|
||
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
|
||
if "ignore_merges" in cfg["model"]:
|
||
logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4))
|
||
|
||
logger.info("")
|
||
|
||
src_ifs += f" if chkhsh == \"{chkhsh}\":\n"
|
||
src_ifs += f" # ref: {model['repo']}\n"
|
||
src_ifs += f" res = \"{name}\"\n"
|
||
|
||
src_func = f"""
|
||
def get_vocab_base_pre(self, tokenizer) -> str:
|
||
# encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
|
||
# is specific for the BPE pre-tokenizer used by the model
|
||
# we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
|
||
# use in llama.cpp to implement the same pre-tokenizer
|
||
|
||
chktxt = {repr(CHK_TXT)}
|
||
|
||
chktok = tokenizer.encode(chktxt)
|
||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||
|
||
logger.debug(f"chktok: {{chktok}}")
|
||
logger.debug(f"chkhsh: {{chkhsh}}")
|
||
|
||
res = None
|
||
|
||
# NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
|
||
# or pull the latest version of the model from Huggingface
|
||
# don't edit the hashes manually!
|
||
{src_ifs}
|
||
if res is None:
|
||
logger.warning("\\n")
|
||
logger.warning("**************************************************************************************")
|
||
logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
|
||
logger.warning("** There are 2 possible reasons for this:")
|
||
logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
|
||
logger.warning("** - the pre-tokenization config has changed upstream")
|
||
logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
|
||
logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
|
||
logger.warning("**")
|
||
logger.warning(f"** chkhsh: {{chkhsh}}")
|
||
logger.warning("**************************************************************************************")
|
||
logger.warning("\\n")
|
||
raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
|
||
|
||
logger.debug(f"tokenizer.ggml.pre: {{repr(res)}}")
|
||
logger.debug(f"chkhsh: {{chkhsh}}")
|
||
|
||
return res
|
||
"""
|
||
|
||
convert_py_pth = pathlib.Path("convert_hf_to_gguf.py")
|
||
convert_py = convert_py_pth.read_text(encoding="utf-8")
|
||
convert_py = re.sub(
|
||
r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)",
|
||
lambda m: m.group(1) + src_func + m.group(3),
|
||
convert_py,
|
||
flags=re.DOTALL | re.MULTILINE,
|
||
)
|
||
|
||
convert_py_pth.write_text(convert_py, encoding="utf-8")
|
||
|
||
logger.info("+++ convert_hf_to_gguf.py was updated")
|
||
|
||
# generate tests for each tokenizer model
|
||
|
||
tests = [
|
||
"ied 4 ½ months",
|
||
"Führer",
|
||
"",
|
||
" ",
|
||
" ",
|
||
" ",
|
||
"\t",
|
||
"\n",
|
||
"\n\n",
|
||
"\n\n\n",
|
||
"\t\n",
|
||
"Hello world",
|
||
" Hello world",
|
||
"Hello World",
|
||
" Hello World",
|
||
" Hello World!",
|
||
"Hello, world!",
|
||
" Hello, world!",
|
||
" this is 🦙.cpp",
|
||
"w048 7tuijk dsdfhu",
|
||
"нещо на Български",
|
||
"កាន់តែពិសេសអាចខលចេញ",
|
||
"🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
|
||
"Hello",
|
||
" Hello",
|
||
" Hello",
|
||
" Hello",
|
||
" Hello",
|
||
" Hello\n Hello",
|
||
" (",
|
||
"\n =",
|
||
"' era",
|
||
"Hello, y'all! How are you 😁 ?我想在apple工作1314151天~",
|
||
"!!!!!!",
|
||
"3",
|
||
"33",
|
||
"333",
|
||
"3333",
|
||
"33333",
|
||
"333333",
|
||
"3333333",
|
||
"33333333",
|
||
"333333333",
|
||
"Cửa Việt", # llama-bpe fails on this
|
||
" discards",
|
||
CHK_TXT,
|
||
]
|
||
|
||
# write the tests to ./models/ggml-vocab-{name}.gguf.inp
|
||
# the format is:
|
||
#
|
||
# test0
|
||
# __ggml_vocab_test__
|
||
# test1
|
||
# __ggml_vocab_test__
|
||
# ...
|
||
#
|
||
|
||
# with each model, encode all tests and write the results in ./models/ggml-vocab-{name}.gguf.out
|
||
# for each test, write the resulting tokens on a separate line
|
||
|
||
for model in models:
|
||
name = model["name"]
|
||
tokt = model["tokt"]
|
||
|
||
# Skip if the tokenizer folder does not exist or there are other download issues previously
|
||
if not os.path.exists(f"models/tokenizers/{name}"):
|
||
logger.warning(f"Directory for tokenizer {name} not found. Skipping...")
|
||
continue
|
||
|
||
# create the tokenizer
|
||
try:
|
||
if name == "t5":
|
||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
|
||
else:
|
||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
|
||
except OSError as e:
|
||
logger.error(f"Failed to load tokenizer for model {name}. Error: {e}")
|
||
continue # Skip this model and continue with the next one in the loop
|
||
|
||
with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f:
|
||
for text in tests:
|
||
f.write(f"{text}")
|
||
f.write("\n__ggml_vocab_test__\n")
|
||
|
||
with open(f"models/ggml-vocab-{name}.gguf.out", "w") as f:
|
||
for text in tests:
|
||
res = tokenizer.encode(text, add_special_tokens=False)
|
||
for r in res:
|
||
f.write(f" {r}")
|
||
f.write("\n")
|
||
|
||
logger.info(f"Tests for {name} written in ./models/ggml-vocab-{name}.gguf.*")
|
||
|
||
# generate commands for creating vocab files
|
||
|
||
logger.info("\nRun the following commands to generate the vocab files for testing:\n")
|
||
|
||
for model in models:
|
||
name = model["name"]
|
||
|
||
print(f"python3 convert_hf_to_gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only") # noqa: NP100
|
||
|
||
logger.info("\n")
|