llama.cpp/utils.h
anzz1 975d2cebf9
cmdline option for custom amount of model parts (--n_parts N) (#348)
* cmdline option for custom amount of model parts (--n_parts N)

* Update main.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-21 17:42:43 +02:00

108 lines
3.4 KiB
C++

// Various helper functions and utilities
#pragma once
#include <string>
#include <map>
#include <vector>
#include <random>
#include <thread>
//
// CLI argument parsing
//
struct gpt_params {
int32_t seed = -1; // RNG seed
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_predict = 128; // new tokens to predict
int32_t repeat_last_n = 64; // last n tokens to penalize
int32_t n_parts = -1; // amount of model parts (-1 = determine from model dimensions)
int32_t n_ctx = 512; //context size
// sampling parameters
int32_t top_k = 40;
float top_p = 0.95f;
float temp = 0.80f;
float repeat_penalty = 1.10f;
int32_t n_batch = 8; // batch size for prompt processing
std::string model = "models/lamma-7B/ggml-model.bin"; // model path
std::string prompt = "";
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
bool memory_f16 = false; // use f16 instead of f32 for memory kv
bool random_prompt = false; // do not randomize prompt if none provided
bool use_color = false; // use color to distinguish generations and inputs
bool interactive = false; // interactive mode
bool interactive_start = false; // reverse prompt immediately
bool instruct = false; // instruction mode (used for Alpaca models)
bool ignore_eos = false; // do not stop generating after eos
};
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
std::string gpt_random_prompt(std::mt19937 & rng);
//
// Model file parsing
//
#define FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files
#define FILE_MAGIC 0x67676d66 // 'ggmf' in hex
#define FILE_VERSION 1
//
// Vocab utils
//
struct llama_vocab {
using id = int32_t;
using token = std::string;
std::map<token, id> token_to_id;
std::map<id, token> id_to_token;
std::map<id, float> score;
};
void replace(std::string & str, const std::string & needle, const std::string & replacement);
// poor-man's JSON parsing
std::map<std::string, int32_t> json_parse(const std::string & fname);
// TODO: temporary until #77 is merged, need this now for some tokenizer tests
bool llama_vocab_load(const std::string & fname, llama_vocab & vocab);
// TODO: this is probably wrong, but I cannot figure out how this tokenizer works ..
// ref: https://github.com/google/sentencepiece
std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos);
// sample next token given probabilities for each embedding
//
// - consider only the top K tokens
// - from them, consider only the top tokens with cumulative probability > P
//
llama_vocab::id llama_sample_top_p_top_k(
const llama_vocab & vocab,
const float * logits,
std::vector<llama_vocab::id> & last_n_tokens,
double repeat_penalty,
int top_k,
double top_p,
double temp,
std::mt19937 & rng);
// filer to top K tokens from list of logits
void sample_top_k(std::vector<std::pair<double, llama_vocab::id>> & logits_id, int top_k);
//
// Quantization
//
size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist);
size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist);