mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 04:50:26 +01:00
3fd62a6b1c
* py : type-check all Python scripts with Pyright * server-tests : use trailing slash in openai base_url * server-tests : add more type annotations * server-tests : strip "chat" from base_url in oai_chat_completions * server-tests : model metadata is a dict * ci : disable pip cache in type-check workflow The cache is not shared between branches, and it's 250MB in size, so it would become quite a big part of the 10GB cache limit of the repo. * py : fix new type errors from master branch * tests : fix test-tokenizer-random.py Apparently, gcc applies optimisations even when pre-processing, which confuses pycparser. * ci : only show warnings and errors in python type-check The "information" level otherwise has entries from 'examples/pydantic_models_to_grammar.py', which could be confusing for someone trying to figure out what failed, considering that these messages can safely be ignored even though they look like errors.
488 lines
27 KiB
Python
488 lines
27 KiB
Python
#!/usr/bin/env python3
|
|
# finetune checkpoint --> gguf conversion
|
|
|
|
import argparse
|
|
import gguf
|
|
import struct
|
|
import numpy as np
|
|
from pathlib import Path
|
|
|
|
# gguf constants
|
|
LLM_KV_OPTIMIZER_TYPE = "optimizer.type"
|
|
LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"
|
|
LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"
|
|
LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"
|
|
LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"
|
|
LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"
|
|
LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"
|
|
LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"
|
|
LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"
|
|
LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"
|
|
LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"
|
|
LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"
|
|
LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"
|
|
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"
|
|
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"
|
|
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"
|
|
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"
|
|
LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"
|
|
|
|
LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"
|
|
LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"
|
|
LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"
|
|
|
|
LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"
|
|
LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"
|
|
LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"
|
|
LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"
|
|
LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"
|
|
LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"
|
|
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"
|
|
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"
|
|
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"
|
|
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"
|
|
|
|
LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model"
|
|
LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora"
|
|
LLM_KV_TRAINING_TYPE = "training.type"
|
|
LLM_KV_TRAINING_FILE_VERSION = "training.file_version"
|
|
LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"
|
|
LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"
|
|
LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"
|
|
|
|
LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD = "training.lora.rank.token_embd"
|
|
LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM = "training.lora.rank.output_norm"
|
|
LLM_KV_TRAINING_LORA_RANK_OUTPUT = "training.lora.rank.output"
|
|
LLM_KV_TRAINING_LORA_RANK_ATTN_NORM = "training.lora.rank.attn_norm"
|
|
LLM_KV_TRAINING_LORA_RANK_ATTN_Q = "training.lora.rank.attn_q"
|
|
LLM_KV_TRAINING_LORA_RANK_ATTN_K = "training.lora.rank.attn_k"
|
|
LLM_KV_TRAINING_LORA_RANK_ATTN_V = "training.lora.rank.attn_v"
|
|
LLM_KV_TRAINING_LORA_RANK_ATTN_OUT = "training.lora.rank.attn_output"
|
|
LLM_KV_TRAINING_LORA_RANK_FFN_NORM = "training.lora.rank.ffn_norm"
|
|
LLM_KV_TRAINING_LORA_RANK_FFN_GATE = "training.lora.rank.ffn_gate"
|
|
LLM_KV_TRAINING_LORA_RANK_FFN_DOWN = "training.lora.rank.ffn_down"
|
|
LLM_KV_TRAINING_LORA_RANK_FFN_UP = "training.lora.rank.ffn_up"
|
|
|
|
class Tensor:
|
|
def __init__(self, dtype='f', ne=None):
|
|
if ne is None:
|
|
ne = []
|
|
self.dtype = dtype
|
|
self.ne = ne
|
|
self.nbytes = 0
|
|
if self.dtype == 'f':
|
|
if len(self.ne) == 0:
|
|
self.nbytes = 0
|
|
else:
|
|
self.nbytes = int(np.prod(self.ne)) * 4
|
|
else:
|
|
raise ValueError(f"Unhandled data type '{self.dtype}'")
|
|
|
|
def load(self, data, offset):
|
|
nd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
namelen = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
dtype = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
|
|
assert(nd == len(self.ne))
|
|
ne = []
|
|
for d in range(nd):
|
|
n = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
ne.append(n)
|
|
|
|
if tuple(ne) != tuple(self.ne):
|
|
raise ValueError(f"Tensor.load: Expected number of elements {str(self.ne)} does not match what is read from file {str(ne)}")
|
|
|
|
if self.dtype == 'f':
|
|
assert(dtype == 0)
|
|
else:
|
|
raise ValueError(f"Unhandled data type '{self.dtype}'")
|
|
|
|
self.name = bytes(data[offset:offset+namelen]); offset += namelen
|
|
# 32-byte alignment
|
|
offset += (0 - offset) & 31
|
|
self.data = data[offset:offset+self.nbytes]
|
|
offset += self.nbytes
|
|
return offset
|
|
|
|
def max_storage_size(self):
|
|
result = 0
|
|
result += 4 # nd
|
|
result += 4 # namelen
|
|
result += 4 # dtype
|
|
result += len(self.ne)*8 # ne
|
|
result += 48 # name (maximum as of commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9)
|
|
result += 31 # 32-byte alignment
|
|
result += self.nbytes
|
|
return result
|
|
|
|
def save_gguf(self, gguf_writer, name):
|
|
gguf_writer.add_tensor(
|
|
name=name,
|
|
tensor=self.data,
|
|
raw_shape=np.array(list(reversed(self.ne))),
|
|
raw_dtype=gguf.GGMLQuantizationType.F32)
|
|
|
|
class OptimizationContext:
|
|
def __init__(self):
|
|
pass
|
|
|
|
def load(self, data, offset):
|
|
self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]
|
|
offset += 4
|
|
|
|
if self.version != 1:
|
|
raise ValueError('Invalid version of optimization context in checkpoint file')
|
|
|
|
self.past = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.nx = struct.unpack('N', bytes(data[offset:offset + 8]))[0]; offset += 8
|
|
self.iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]); offset += 4
|
|
|
|
self.adam_m = Tensor('f', [self.nx])
|
|
self.adam_v = Tensor('f', [self.nx])
|
|
self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
|
|
|
|
self.lbfgs_x = Tensor('f', [self.nx])
|
|
self.lbfgs_xp = Tensor('f', [self.nx])
|
|
self.lbfgs_g = Tensor('f', [self.nx])
|
|
self.lbfgs_gp = Tensor('f', [self.nx])
|
|
self.lbfgs_d = Tensor('f', [self.nx])
|
|
self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else [])
|
|
self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
|
|
self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
|
|
self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m])
|
|
self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m])
|
|
|
|
# forgot to save type in version 1:
|
|
# guess self.type from number of remaining bytes
|
|
size_type_0 = 12 + sum([t.max_storage_size() for t in
|
|
[self.adam_m, self.adam_v]
|
|
+([self.adam_pf] if (self.past > 0) else [])])
|
|
size_type_1 = 24 + sum([t.max_storage_size() for t in
|
|
[self.lbfgs_x, self.lbfgs_xp, self.lbfgs_g,
|
|
self.lbfgs_gp, self.lbfgs_d, self.lbfgs_pf,
|
|
self.lbfgs_lmal, self.lbfgs_lmys,
|
|
self.lbfgs_lms, self.lbfgs_lmy]
|
|
+([self.lbfgs_pf] if (self.past > 0) else [])])
|
|
# due to alignment padding the size might not by exact
|
|
# but the difference in size for both types is significant,
|
|
# so we can just use whichever is closest
|
|
remaining = len(data) - offset
|
|
if abs(remaining - size_type_0) < abs(remaining - size_type_1):
|
|
self.type = 0
|
|
else:
|
|
self.type = 1
|
|
|
|
if self.type == 0:
|
|
offset = self.adam_m.load(data, offset)
|
|
offset = self.adam_v.load(data, offset)
|
|
offset = self.adam_pf.load(data,offset)
|
|
|
|
self.adam_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.adam_fx_prev = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
|
|
elif self.type == 1:
|
|
offset = self.lbfgs_x.load(data, offset)
|
|
offset = self.lbfgs_xp.load(data, offset)
|
|
offset = self.lbfgs_g.load(data, offset)
|
|
offset = self.lbfgs_gp.load(data, offset)
|
|
offset = self.lbfgs_d.load(data, offset)
|
|
offset = self.lbfgs_pf.load(data, offset)
|
|
offset = self.lbfgs_lmal.load(data, offset)
|
|
offset = self.lbfgs_lmys.load(data, offset)
|
|
offset = self.lbfgs_lms.load(data, offset)
|
|
offset = self.lbfgs_lmy.load(data, offset)
|
|
|
|
self.lbfgs_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_j = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_k = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_end = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
|
|
else:
|
|
raise ValueError(f"Invalid optimizer type '{self.type}'")
|
|
|
|
return offset
|
|
|
|
def save_gguf(self, gguf_writer):
|
|
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_FILE_VERSION, 0)
|
|
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, self.past)
|
|
gguf_writer.add_uint64(LLM_KV_OPTIMIZER_PARAMETER_COUNT, self.nx)
|
|
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ITERATION_COUNT, self.iter)
|
|
gguf_writer.add_bool(LLM_KV_OPTIMIZER_JUST_INITIALIZED, self.just_initialized)
|
|
|
|
if self.type == 0:
|
|
gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM)
|
|
gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, self.adam_fx_best)
|
|
gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, self.adam_fx_prev)
|
|
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, self.adam_n_no_improvement)
|
|
|
|
self.adam_m.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS)
|
|
self.adam_v.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS)
|
|
if self.past > 0:
|
|
self.adam_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES)
|
|
|
|
elif self.type == 1:
|
|
gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS)
|
|
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, self.lbfgs_m)
|
|
gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, self.lbfgs_fx_best)
|
|
gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, self.lbfgs_step)
|
|
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, self.lbfgs_j)
|
|
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, self.lbfgs_k)
|
|
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, self.lbfgs_end)
|
|
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, self.lbfgs_n_no_improvement)
|
|
|
|
self.lbfgs_x.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS)
|
|
self.lbfgs_xp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS)
|
|
self.lbfgs_g.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS)
|
|
self.lbfgs_gp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS)
|
|
self.lbfgs_d.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION)
|
|
if self.past > 0:
|
|
self.lbfgs_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES)
|
|
self.lbfgs_lmal.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA)
|
|
self.lbfgs_lmys.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS)
|
|
self.lbfgs_lms.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S)
|
|
self.lbfgs_lmy.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y)
|
|
else:
|
|
raise ValueError('Unknown optimizer type')
|
|
|
|
class LoraParams:
|
|
def __init__(self):
|
|
pass
|
|
|
|
def load(self, data, offset):
|
|
self.n_rank_attention_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_rank_wq = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_rank_wk = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_rank_wv = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_rank_wo = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_rank_ffn_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_rank_w1 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_rank_w2 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_rank_w3 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_rank_tok_embeddings = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_rank_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_rank_output = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
return offset
|
|
|
|
def save_gguf(self, gguf_writer):
|
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD, self.n_rank_tok_embeddings)
|
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM, self.n_rank_norm)
|
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_OUTPUT, self.n_rank_output)
|
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_NORM, self.n_rank_attention_norm)
|
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_Q, self.n_rank_wq)
|
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_K, self.n_rank_wk)
|
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_V, self.n_rank_wv)
|
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_OUT, self.n_rank_wo)
|
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_NORM, self.n_rank_ffn_norm)
|
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_GATE, self.n_rank_w1)
|
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_DOWN, self.n_rank_w2)
|
|
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_UP, self.n_rank_w3)
|
|
|
|
class ModelParams:
|
|
def __init__(self, n_ff = None):
|
|
self.n_ff = n_ff
|
|
|
|
def load(self, data, offset):
|
|
self.n_vocab = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_embd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_mult = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_head = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_layer = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_rot = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
return offset
|
|
|
|
def get_n_ff(self):
|
|
if self.n_ff is None:
|
|
# struct my_llama_model::get_n_ff in train-text-from-scratch.cpp commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9
|
|
return ((2*(4*self.n_embd)//3 + self.n_mult - 1)//self.n_mult)*self.n_mult
|
|
else:
|
|
return self.n_ff
|
|
|
|
def save_gguf(self, gguf_writer):
|
|
# self.n_vocab not saved
|
|
gguf_writer.add_embedding_length(self.n_embd)
|
|
gguf_writer.add_head_count(self.n_head)
|
|
gguf_writer.add_block_count(self.n_layer)
|
|
gguf_writer.add_rope_dimension_count(self.n_rot)
|
|
gguf_writer.add_feed_forward_length(self.get_n_ff())
|
|
|
|
def tensor_name(key, bid=None, suffix=".weight"):
|
|
return gguf.TENSOR_NAMES[key].format(bid=bid) + suffix
|
|
|
|
class Layer:
|
|
def __init__(self, params, lora_params, bid):
|
|
self.bid = bid
|
|
self.att_norm_a = Tensor('f', [lora_params.n_rank_attention_norm, params.n_embd])
|
|
self.att_norm_b = Tensor('f', [lora_params.n_rank_attention_norm, 1])
|
|
self.wq_a = Tensor('f', [lora_params.n_rank_wq, params.n_embd])
|
|
self.wq_b = Tensor('f', [lora_params.n_rank_wq, params.n_embd])
|
|
self.wk_a = Tensor('f', [lora_params.n_rank_wk, params.n_embd])
|
|
self.wk_b = Tensor('f', [lora_params.n_rank_wk, params.n_embd])
|
|
self.wv_a = Tensor('f', [lora_params.n_rank_wv, params.n_embd])
|
|
self.wv_b = Tensor('f', [lora_params.n_rank_wv, params.n_embd])
|
|
self.wo_a = Tensor('f', [lora_params.n_rank_wo, params.n_embd])
|
|
self.wo_b = Tensor('f', [lora_params.n_rank_wo, params.n_embd])
|
|
self.ffn_norm_a = Tensor('f', [lora_params.n_rank_ffn_norm, params.n_embd])
|
|
self.ffn_norm_b = Tensor('f', [lora_params.n_rank_ffn_norm, 1])
|
|
self.w1_a = Tensor('f', [lora_params.n_rank_w1, params.n_embd])
|
|
self.w1_b = Tensor('f', [lora_params.n_rank_w1, params.get_n_ff()])
|
|
self.w2_a = Tensor('f', [lora_params.n_rank_w2, params.get_n_ff()])
|
|
self.w2_b = Tensor('f', [lora_params.n_rank_w2, params.n_embd])
|
|
self.w3_a = Tensor('f', [lora_params.n_rank_w3, params.n_embd])
|
|
self.w3_b = Tensor('f', [lora_params.n_rank_w3, params.get_n_ff()])
|
|
|
|
def load(self, data, offset):
|
|
offset = self.att_norm_a.load(data, offset)
|
|
offset = self.att_norm_b.load(data, offset)
|
|
offset = self.wq_a.load(data, offset)
|
|
offset = self.wq_b.load(data, offset)
|
|
offset = self.wk_a.load(data, offset)
|
|
offset = self.wk_b.load(data, offset)
|
|
offset = self.wv_a.load(data, offset)
|
|
offset = self.wv_b.load(data, offset)
|
|
offset = self.wo_a.load(data, offset)
|
|
offset = self.wo_b.load(data, offset)
|
|
offset = self.ffn_norm_a.load(data, offset)
|
|
offset = self.ffn_norm_b.load(data, offset)
|
|
offset = self.w1_a.load(data, offset)
|
|
offset = self.w1_b.load(data, offset)
|
|
offset = self.w2_a.load(data, offset)
|
|
offset = self.w2_b.load(data, offset)
|
|
offset = self.w3_a.load(data, offset)
|
|
offset = self.w3_b.load(data, offset)
|
|
return offset
|
|
|
|
def save_gguf(self, gguf_writer):
|
|
self.att_norm_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid, ".weight.lora_a"))
|
|
self.att_norm_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid, ".weight.lora_b"))
|
|
self.wq_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid, ".weight.lora_a"))
|
|
self.wq_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid, ".weight.lora_b"))
|
|
self.wk_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid, ".weight.lora_a"))
|
|
self.wk_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid, ".weight.lora_b"))
|
|
self.wv_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid, ".weight.lora_a"))
|
|
self.wv_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid, ".weight.lora_b"))
|
|
self.wo_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid, ".weight.lora_a"))
|
|
self.wo_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid, ".weight.lora_b"))
|
|
self.ffn_norm_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid, ".weight.lora_a"))
|
|
self.ffn_norm_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid, ".weight.lora_b"))
|
|
self.w1_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid, ".weight.lora_a"))
|
|
self.w1_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid, ".weight.lora_b"))
|
|
self.w2_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid, ".weight.lora_a"))
|
|
self.w2_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid, ".weight.lora_b"))
|
|
self.w3_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid, ".weight.lora_a"))
|
|
self.w3_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid, ".weight.lora_b"))
|
|
|
|
class LoraModel:
|
|
def __init__(self, n_ff = None):
|
|
self.params = ModelParams(n_ff = n_ff)
|
|
self.lora_params = LoraParams()
|
|
self.layers = []
|
|
|
|
def load(self, data, offset):
|
|
offset = self.params.load(data, offset)
|
|
offset = self.lora_params.load(data, offset)
|
|
|
|
self.tok_embd_a = Tensor('f', [self.lora_params.n_rank_tok_embeddings, self.params.n_embd])
|
|
self.tok_embd_b = Tensor('f', [self.lora_params.n_rank_tok_embeddings, self.params.n_vocab])
|
|
self.norm_a = Tensor('f', [self.lora_params.n_rank_norm, self.params.n_embd])
|
|
self.norm_b = Tensor('f', [self.lora_params.n_rank_norm, 1])
|
|
self.output_a = Tensor('f', [self.lora_params.n_rank_output, self.params.n_embd])
|
|
self.output_b = Tensor('f', [self.lora_params.n_rank_output, self.params.n_vocab])
|
|
|
|
offset = self.tok_embd_a.load(data, offset)
|
|
offset = self.tok_embd_b.load(data, offset)
|
|
offset = self.norm_a.load(data, offset)
|
|
offset = self.norm_b.load(data, offset)
|
|
offset = self.output_a.load(data, offset)
|
|
offset = self.output_b.load(data, offset)
|
|
|
|
self.layers.clear()
|
|
for bid in range(self.params.n_layer):
|
|
layer = Layer(self.params, self.lora_params, bid)
|
|
offset = layer.load(data, offset)
|
|
self.layers.append(layer)
|
|
|
|
return offset
|
|
|
|
def save_gguf(self, gguf_writer):
|
|
self.params.save_gguf(gguf_writer)
|
|
self.lora_params.save_gguf(gguf_writer)
|
|
|
|
self.tok_embd_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD, suffix=".weight.lora_a"))
|
|
self.tok_embd_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD, suffix=".weight.lora_b"))
|
|
self.norm_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM, suffix=".weight.lora_a"))
|
|
self.norm_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM, suffix=".weight.lora_b"))
|
|
self.output_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT, suffix=".weight.lora_a"))
|
|
self.output_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT, suffix=".weight.lora_b"))
|
|
|
|
for layer in self.layers:
|
|
layer.save_gguf(gguf_writer)
|
|
|
|
class LoraCheckpoint:
|
|
def __init__(self, n_ff = None):
|
|
self.model = LoraModel(n_ff = n_ff)
|
|
self.opt_ctx = OptimizationContext()
|
|
|
|
def load(self, data, offset):
|
|
magic = bytes(reversed(data[offset:offset + 4])); offset += 4
|
|
if magic != b'ggcl':
|
|
raise ValueError(f"File header magic indicates, that this is no finetune-lora checkpoint file. Expected 'ggcl', Got '{str(magic)}'")
|
|
|
|
self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
if self.version != 0:
|
|
raise ValueError('Invalid version of checkpoint file')
|
|
|
|
self.train_its = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.train_samples = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.train_tokens = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
|
|
offset = self.model.load(data, offset)
|
|
offset = self.opt_ctx.load(data, offset)
|
|
|
|
return offset
|
|
|
|
def save_gguf(self, gguf_writer):
|
|
gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32)
|
|
gguf_writer.add_layer_norm_rms_eps(1e-5)
|
|
gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION, 0)
|
|
gguf_writer.add_string(LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_FINETUNE_LORA)
|
|
gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its)
|
|
gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT, self.train_samples)
|
|
gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT, self.train_tokens)
|
|
self.model.save_gguf(gguf_writer)
|
|
self.opt_ctx.save_gguf(gguf_writer)
|
|
|
|
def handle_args():
|
|
parser = argparse.ArgumentParser(description = 'Convert finetune checkpoints to GGUF')
|
|
parser.add_argument('--input', '-i', type = Path, help = 'Input finetune checkpoint filename', required=True)
|
|
parser.add_argument('--output', '-o', type = Path, help = 'Output GGUF filename', required=True)
|
|
parser.add_argument('--ff', type = int, help = "Feedforward size, if not provided compute from n_mult. Provide this if you get 'ValueError: Tensor.load: Expected number of elements does not match what is read from file'", required=False)
|
|
return parser.parse_args()
|
|
|
|
def main():
|
|
cfg = handle_args()
|
|
print(cfg)
|
|
data = np.memmap(cfg.input, mode = 'r')
|
|
chk = LoraCheckpoint(n_ff = cfg.ff)
|
|
offset = 0
|
|
offset = chk.load(data, offset)
|
|
# we should have read all available data
|
|
assert(offset == len(data))
|
|
|
|
gguf_writer = gguf.GGUFWriter(cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
|
|
chk.save_gguf(gguf_writer)
|
|
print(" gguf: write header")
|
|
gguf_writer.write_header_to_file()
|
|
print(" gguf: write metadata")
|
|
gguf_writer.write_kv_data_to_file()
|
|
print(" gguf: write tensors")
|
|
gguf_writer.write_tensors_to_file()
|
|
gguf_writer.close()
|
|
|
|
if __name__ == '__main__':
|
|
main()
|