mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 22:59:24 +01:00
f578b86b21
* move BLAS to a separate backend * rename GGML_USE_OPENBLAS to GGML_USE_BLAS * alloc : reuse same buffer when the same buffer type if used multiple times * set number of threads automatically for openblas and blis * sched : print assignments when GGML_SCHED_DEBUG env variable is set * sched : allow ops with weights on an incompatible buffer type This will cause the weight to be copied to a backend that supports the op, which is very costly. The weight should have been stored in a buffer of a backend that can run the op, but llama.cpp cannot do this automatically at the moment. --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
154 lines
7.4 KiB
C
154 lines
7.4 KiB
C
#pragma once
|
|
|
|
// ggml-backend internal header
|
|
|
|
#include "ggml-backend.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
//
|
|
// Backend buffer
|
|
//
|
|
|
|
// buffer type
|
|
typedef void * ggml_backend_buffer_type_context_t;
|
|
|
|
struct ggml_backend_buffer_type_i {
|
|
const char * (*GGML_CALL get_name) (ggml_backend_buffer_type_t buft);
|
|
// allocate a buffer of this type
|
|
ggml_backend_buffer_t (*GGML_CALL alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
|
|
// tensor alignment
|
|
size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft);
|
|
// max buffer size that can be allocated
|
|
size_t (*GGML_CALL get_max_size) (ggml_backend_buffer_type_t buft);
|
|
// data size needed to allocate the tensor, including padding
|
|
size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor);
|
|
// check if tensor data is in host memory
|
|
bool (*GGML_CALL is_host) (ggml_backend_buffer_type_t buft);
|
|
};
|
|
|
|
struct ggml_backend_buffer_type {
|
|
struct ggml_backend_buffer_type_i iface;
|
|
ggml_backend_buffer_type_context_t context;
|
|
};
|
|
|
|
// buffer
|
|
typedef void * ggml_backend_buffer_context_t;
|
|
|
|
struct ggml_backend_buffer_i {
|
|
const char * (*GGML_CALL get_name) (ggml_backend_buffer_t buffer);
|
|
void (*GGML_CALL free_buffer)(ggml_backend_buffer_t buffer);
|
|
void * (*GGML_CALL get_base) (ggml_backend_buffer_t buffer);
|
|
void (*GGML_CALL init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
|
void (*GGML_CALL set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
|
void (*GGML_CALL get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
|
bool (*GGML_CALL cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer
|
|
void (*GGML_CALL clear) (ggml_backend_buffer_t buffer, uint8_t value);
|
|
void (*GGML_CALL reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
|
|
};
|
|
|
|
struct ggml_backend_buffer {
|
|
struct ggml_backend_buffer_i iface;
|
|
ggml_backend_buffer_type_t buft;
|
|
ggml_backend_buffer_context_t context;
|
|
size_t size;
|
|
enum ggml_backend_buffer_usage usage;
|
|
};
|
|
|
|
GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
|
|
ggml_backend_buffer_type_t buft,
|
|
struct ggml_backend_buffer_i iface,
|
|
ggml_backend_buffer_context_t context,
|
|
size_t size);
|
|
|
|
// do not use directly, use ggml_backend_tensor_copy instead
|
|
bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst);
|
|
|
|
// buffer that contains a collection of buffers
|
|
GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers);
|
|
GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer);
|
|
GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
|
|
|
//
|
|
// Backend
|
|
//
|
|
|
|
typedef void * ggml_backend_context_t;
|
|
|
|
struct ggml_backend_i {
|
|
const char * (*GGML_CALL get_name)(ggml_backend_t backend);
|
|
|
|
void (*GGML_CALL free)(ggml_backend_t backend);
|
|
|
|
// buffer allocation
|
|
ggml_backend_buffer_type_t (*GGML_CALL get_default_buffer_type)(ggml_backend_t backend);
|
|
|
|
// (optional) asynchronous tensor data access
|
|
void (*GGML_CALL set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
|
void (*GGML_CALL get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
|
bool (*GGML_CALL cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
|
|
|
// (optional) complete all pending operations
|
|
void (*GGML_CALL synchronize)(ggml_backend_t backend);
|
|
|
|
// compute graph with a plan (not used currently)
|
|
// create a new plan for a graph
|
|
ggml_backend_graph_plan_t (*GGML_CALL graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
|
|
void (*GGML_CALL graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
|
// update the plan with a new graph - this should be faster than creating a new plan when the graph has the same topology
|
|
void (*GGML_CALL graph_plan_update) (ggml_backend_t backend, ggml_backend_graph_plan_t plan, const struct ggml_cgraph * cgraph);
|
|
// compute the graph with the plan
|
|
enum ggml_status (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
|
|
|
// compute graph without a plan (async)
|
|
enum ggml_status (*GGML_CALL graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
|
|
|
// check if the backend can compute an operation
|
|
bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
|
|
|
// check if the backend can use tensors allocated in a buffer type
|
|
bool (*GGML_CALL supports_buft)(ggml_backend_t backend, ggml_backend_buffer_type_t buft);
|
|
|
|
// check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer
|
|
// these should be expensive operations with large batch sizes that may benefit from running on this backend
|
|
// even if the weight has to be copied from the CPU temporarily
|
|
bool (*GGML_CALL offload_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
|
|
|
// (optional) event synchronization
|
|
// create a new event that can record events on this backend instance
|
|
ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend);
|
|
void (*GGML_CALL event_free) (ggml_backend_event_t event);
|
|
// record an event on the backend instance that created it
|
|
void (*GGML_CALL event_record) (ggml_backend_event_t event);
|
|
// wait for an event on on a different backend instance
|
|
void (*GGML_CALL event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
|
|
// block until an event is recorded
|
|
void (*GGML_CALL event_synchronize) (ggml_backend_event_t event);
|
|
};
|
|
|
|
struct ggml_backend {
|
|
ggml_guid_t guid;
|
|
|
|
struct ggml_backend_i iface;
|
|
ggml_backend_context_t context;
|
|
};
|
|
|
|
struct ggml_backend_event {
|
|
ggml_backend_t backend;
|
|
void * context;
|
|
};
|
|
|
|
//
|
|
// Backend registry
|
|
//
|
|
|
|
typedef ggml_backend_t (*GGML_CALL ggml_backend_init_fn)(const char * params, void * user_data);
|
|
|
|
GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|