mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-19 08:20:10 +01:00
0d2b66c638
refactor ggml-cuda
130 lines
7.5 KiB
C
130 lines
7.5 KiB
C
#pragma once
|
|
|
|
#include "ggml.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
typedef void * ggml_graph_plan_t;
|
|
typedef void * ggml_backend_context_t;
|
|
typedef void * ggml_backend_buffer_t;
|
|
struct ggml_backend;
|
|
|
|
// buffers have space for the tensor structs in host memory, and tensor data in backend-specific memory
|
|
struct ggml_buffer {
|
|
// host memory
|
|
size_t mem_size;
|
|
void * mem_buffer;
|
|
|
|
// tensor data
|
|
struct ggml_backend * backend;
|
|
ggml_backend_buffer_t backend_buffer; // backend-specific data
|
|
};
|
|
|
|
struct ggml_backend_interface {
|
|
const char * (*get_name)(ggml_backend_context_t ctx);
|
|
|
|
void (*free_context)(ggml_backend_context_t ctx);
|
|
|
|
// buffers
|
|
ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_context_t ctx, size_t size);
|
|
void (*free_buffer) (ggml_backend_context_t ctx, ggml_backend_buffer_t buffer);
|
|
void (*reset_buffer)(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer);
|
|
void (*alloc_tensor)(ggml_backend_context_t ctx, ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
|
|
|
// TODO: pinned buffers for faster transfers between host and device
|
|
|
|
// tensor data access
|
|
// these functions can be asynchronous. helper functions are provided for synchronous access that automatically call synchronize
|
|
void (*set_tensor_async)(ggml_backend_context_t ctx, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
|
void (*get_tensor_async)(ggml_backend_context_t ctx, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
|
void (*synchronize)(ggml_backend_context_t ctx);
|
|
|
|
// (optional) copy tensor between different backends, allow for single-copy tranfers
|
|
void (*cpy_tensor_from)(ggml_backend_context_t ctx, struct ggml_tensor * src, struct ggml_tensor * dst);
|
|
void (*cpy_tensor_to) (ggml_backend_context_t ctx, struct ggml_tensor * src, struct ggml_tensor * dst);
|
|
|
|
|
|
// compute graph with a plan
|
|
ggml_graph_plan_t (*graph_plan_create) (ggml_backend_context_t ctx, struct ggml_cgraph * cgraph);
|
|
void (*graph_plan_free) (ggml_backend_context_t ctx, ggml_graph_plan_t plan);
|
|
void (*graph_plan_compute)(ggml_backend_context_t ctx, ggml_graph_plan_t plan);
|
|
|
|
// compute graph without a plan
|
|
void (*graph_compute) (ggml_backend_context_t ctx, struct ggml_cgraph * cgraph);
|
|
|
|
// check if a backend supports a given operation
|
|
// this could be used to fallback automatically to the CPU backend if a backend doesn't support an operation
|
|
// bool (*supports_op)(ggml_backend_context_t ctx, struct ggml_tensor * op);
|
|
};
|
|
|
|
struct ggml_backend {
|
|
struct ggml_backend_interface * interface;
|
|
ggml_backend_context_t context;
|
|
};
|
|
|
|
// backend helper functions
|
|
static inline const char * ggml_backend_name(struct ggml_backend * backend) { return backend->interface->get_name(backend->context); }
|
|
static inline void ggml_backend_free_context(struct ggml_backend * backend) { backend->interface->free_context(backend->context); }
|
|
static inline void ggml_backend_set_tensor_async(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { tensor->backend->interface->set_tensor_async(tensor->backend->context, tensor, data, offset, size); }
|
|
static inline void ggml_backend_get_tensor_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { tensor->backend->interface->get_tensor_async(tensor->backend->context, tensor, data, offset, size); }
|
|
static inline void ggml_backend_set_tensor(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { tensor->backend->interface->set_tensor_async(tensor->backend->context, tensor, data, offset, size); tensor->backend->interface->synchronize(tensor->backend->context); }
|
|
static inline void ggml_backend_get_tensor(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { tensor->backend->interface->get_tensor_async(tensor->backend->context, tensor, data, offset, size); tensor->backend->interface->synchronize(tensor->backend->context); }
|
|
static inline void ggml_backend_synchronize(struct ggml_backend * backend) { backend->interface->synchronize(backend->context); }
|
|
static inline ggml_graph_plan_t ggml_backend_graph_plan_create(struct ggml_backend * backend, struct ggml_cgraph * cgraph) { return backend->interface->graph_plan_create(backend->context, cgraph); }
|
|
static inline void ggml_backend_graph_plan_free(struct ggml_backend * backend, ggml_graph_plan_t plan) { backend->interface->graph_plan_free(backend->context, plan); }
|
|
static inline void ggml_backend_graph_plan_compute(struct ggml_backend * backend, ggml_graph_plan_t plan) { backend->interface->graph_plan_compute(backend->context, plan); }
|
|
static inline void ggml_backend_graph_compute(struct ggml_backend * backend, struct ggml_cgraph * cgraph) { backend->interface->graph_compute(backend->context, cgraph); }
|
|
|
|
// buffer and tensor allocation
|
|
GGML_API struct ggml_buffer ggml_backend_alloc_buffer(struct ggml_backend * backend, size_t size, size_t max_tensors);
|
|
GGML_API void ggml_backend_free_buffer(struct ggml_buffer * buffer);
|
|
static inline void ggml_backend_reset_buffer(struct ggml_buffer * buffer) { buffer->backend->interface->reset_buffer(buffer->backend->context, buffer->backend_buffer); }
|
|
static inline void ggml_backend_alloc_tensor(struct ggml_buffer * buffer, struct ggml_tensor * tensor) { buffer->backend->interface->alloc_tensor(buffer->backend->context, buffer->backend_buffer, tensor); }
|
|
|
|
// tensor copy between different backends
|
|
GGML_API void ggml_backend_cpy_tensor(struct ggml_tensor * dst, struct ggml_tensor * src);
|
|
|
|
// CPU backend
|
|
GGML_API struct ggml_backend ggml_backend_cpu_init(void);
|
|
GGML_API void ggml_backend_cpu_set_n_threads(struct ggml_backend * backend_cpu, int n_threads);
|
|
|
|
///////////////////////////
|
|
|
|
// graph splitting
|
|
#define GGML_MAX_SPLITS 200
|
|
#define GGML_MAX_SPLIT_INPUTS 4
|
|
|
|
struct ggml_graph_split {
|
|
char name[GGML_MAX_NAME];
|
|
struct ggml_tensor * src_inputs[GGML_MAX_SPLIT_INPUTS + 1];
|
|
struct ggml_tensor * dst_inputs[GGML_MAX_SPLIT_INPUTS + 1];
|
|
struct ggml_cgraph * graph;
|
|
};
|
|
|
|
// TODO: this shouldn't be fixed size, allocate from ggml_context
|
|
struct ggml_graph_splits {
|
|
int n_splits;
|
|
struct ggml_graph_split splits[GGML_MAX_SPLITS];
|
|
};
|
|
|
|
// TODO: allocate in ggml_context
|
|
struct ggml_graph_splits ggml_graph_split_init(void);
|
|
// this won't be needed once we can allocate graphs from a ggml_context
|
|
GGML_API void ggml_graph_splits_free(struct ggml_graph_splits * splits);
|
|
|
|
// add a split to the graph - single and multiple inputs versions
|
|
GGML_API void ggml_graph_splits_add(struct ggml_graph_splits * splits, struct ggml_tensor ** input, struct ggml_context * ctx, const char * fmt, ...);
|
|
GGML_API void ggml_graph_splits_add_n(struct ggml_graph_splits * splits, struct ggml_tensor *** inputs, struct ggml_context * ctx, const char * fmt, ...);
|
|
|
|
// build graphs for all splits
|
|
GGML_API void ggml_graph_splits_build_forward(struct ggml_graph_splits * splits, struct ggml_tensor * output);
|
|
|
|
// compute
|
|
GGML_API void ggml_graph_splits_compute(struct ggml_graph_splits * splits);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|