mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 05:42:22 +01:00
99009e72f8
* Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
302 lines
8.5 KiB
Makefile
302 lines
8.5 KiB
Makefile
# Define the default target now so that it is always the first target
|
|
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot
|
|
|
|
ifdef LLAMA_BUILD_SERVER
|
|
BUILD_TARGETS += server
|
|
endif
|
|
|
|
default: $(BUILD_TARGETS)
|
|
|
|
ifndef UNAME_S
|
|
UNAME_S := $(shell uname -s)
|
|
endif
|
|
|
|
ifndef UNAME_P
|
|
UNAME_P := $(shell uname -p)
|
|
endif
|
|
|
|
ifndef UNAME_M
|
|
UNAME_M := $(shell uname -m)
|
|
endif
|
|
|
|
CCV := $(shell $(CC) --version | head -n 1)
|
|
CXXV := $(shell $(CXX) --version | head -n 1)
|
|
|
|
# Mac OS + Arm can report x86_64
|
|
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
|
|
ifeq ($(UNAME_S),Darwin)
|
|
ifneq ($(UNAME_P),arm)
|
|
SYSCTL_M := $(shell sysctl -n hw.optional.arm64 2>/dev/null)
|
|
ifeq ($(SYSCTL_M),1)
|
|
# UNAME_P := arm
|
|
# UNAME_M := arm64
|
|
warn := $(warning Your arch is announced as x86_64, but it seems to actually be ARM64. Not fixing that can lead to bad performance. For more info see: https://github.com/ggerganov/whisper.cpp/issues/66\#issuecomment-1282546789)
|
|
endif
|
|
endif
|
|
endif
|
|
|
|
#
|
|
# Compile flags
|
|
#
|
|
|
|
# keep standard at C11 and C++11
|
|
# -Ofast tends to produce faster code, but may not be available for some compilers.
|
|
#OPT = -Ofast
|
|
OPT = -O3
|
|
CFLAGS = -I. $(OPT) -std=c11 -fPIC
|
|
CXXFLAGS = -I. -I./examples $(OPT) -std=c++11 -fPIC
|
|
LDFLAGS =
|
|
|
|
ifdef LLAMA_DEBUG
|
|
CFLAGS += -O0 -g
|
|
CXXFLAGS += -O0 -g
|
|
LDFLAGS += -g
|
|
else
|
|
CFLAGS += -DNDEBUG
|
|
CXXFLAGS += -DNDEBUG
|
|
endif
|
|
|
|
# warnings
|
|
CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith
|
|
CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar
|
|
|
|
# OS specific
|
|
# TODO: support Windows
|
|
ifeq ($(UNAME_S),Linux)
|
|
CFLAGS += -pthread
|
|
CXXFLAGS += -pthread
|
|
endif
|
|
ifeq ($(UNAME_S),Darwin)
|
|
CFLAGS += -pthread
|
|
CXXFLAGS += -pthread
|
|
endif
|
|
ifeq ($(UNAME_S),FreeBSD)
|
|
CFLAGS += -pthread
|
|
CXXFLAGS += -pthread
|
|
endif
|
|
ifeq ($(UNAME_S),NetBSD)
|
|
CFLAGS += -pthread
|
|
CXXFLAGS += -pthread
|
|
endif
|
|
ifeq ($(UNAME_S),OpenBSD)
|
|
CFLAGS += -pthread
|
|
CXXFLAGS += -pthread
|
|
endif
|
|
ifeq ($(UNAME_S),Haiku)
|
|
CFLAGS += -pthread
|
|
CXXFLAGS += -pthread
|
|
endif
|
|
|
|
ifdef LLAMA_GPROF
|
|
CFLAGS += -pg
|
|
CXXFLAGS += -pg
|
|
endif
|
|
ifdef LLAMA_PERF
|
|
CFLAGS += -DGGML_PERF
|
|
CXXFLAGS += -DGGML_PERF
|
|
endif
|
|
|
|
# Architecture specific
|
|
# TODO: probably these flags need to be tweaked on some architectures
|
|
# feel free to update the Makefile for your architecture and send a pull request or issue
|
|
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
|
|
# Use all CPU extensions that are available:
|
|
CFLAGS += -march=native -mtune=native
|
|
CXXFLAGS += -march=native -mtune=native
|
|
|
|
# Usage AVX-only
|
|
#CFLAGS += -mfma -mf16c -mavx
|
|
#CXXFLAGS += -mfma -mf16c -mavx
|
|
endif
|
|
|
|
ifneq ($(filter ppc64%,$(UNAME_M)),)
|
|
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
|
|
ifneq (,$(findstring POWER9,$(POWER9_M)))
|
|
CFLAGS += -mcpu=power9
|
|
CXXFLAGS += -mcpu=power9
|
|
endif
|
|
# Require c++23's std::byteswap for big-endian support.
|
|
ifeq ($(UNAME_M),ppc64)
|
|
CXXFLAGS += -std=c++23 -DGGML_BIG_ENDIAN
|
|
endif
|
|
endif
|
|
|
|
ifndef LLAMA_NO_ACCELERATE
|
|
# Mac M1 - include Accelerate framework.
|
|
# `-framework Accelerate` works on Mac Intel as well, with negliable performance boost (as of the predict time).
|
|
ifeq ($(UNAME_S),Darwin)
|
|
CFLAGS += -DGGML_USE_ACCELERATE
|
|
LDFLAGS += -framework Accelerate
|
|
endif
|
|
endif # LLAMA_NO_ACCELERATE
|
|
|
|
ifdef LLAMA_OPENBLAS
|
|
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas -I/usr/include/openblas
|
|
ifneq ($(shell grep -e "Arch Linux" -e "ID_LIKE=arch" /etc/os-release 2>/dev/null),)
|
|
LDFLAGS += -lopenblas -lcblas
|
|
else
|
|
LDFLAGS += -lopenblas
|
|
endif
|
|
endif # LLAMA_OPENBLAS
|
|
|
|
ifdef LLAMA_BLIS
|
|
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis
|
|
LDFLAGS += -lblis -L/usr/local/lib
|
|
endif # LLAMA_BLIS
|
|
|
|
ifdef LLAMA_CUBLAS
|
|
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
|
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
|
LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
|
|
OBJS += ggml-cuda.o
|
|
NVCC = nvcc
|
|
NVCCFLAGS = --forward-unknown-to-host-compiler -arch=native
|
|
ifdef LLAMA_CUDA_DMMV_X
|
|
NVCCFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
|
|
else
|
|
NVCCFLAGS += -DGGML_CUDA_DMMV_X=32
|
|
endif # LLAMA_CUDA_DMMV_X
|
|
ifdef LLAMA_CUDA_DMMV_Y
|
|
NVCCFLAGS += -DGGML_CUDA_DMMV_Y=$(LLAMA_CUDA_DMMV_Y)
|
|
else
|
|
NVCCFLAGS += -DGGML_CUDA_DMMV_Y=1
|
|
endif # LLAMA_CUDA_DMMV_Y
|
|
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
|
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
|
|
endif # LLAMA_CUBLAS
|
|
|
|
ifdef LLAMA_CLBLAST
|
|
CFLAGS += -DGGML_USE_CLBLAST
|
|
CXXFLAGS += -DGGML_USE_CLBLAST
|
|
# Mac provides OpenCL as a framework
|
|
ifeq ($(UNAME_S),Darwin)
|
|
LDFLAGS += -lclblast -framework OpenCL
|
|
else
|
|
LDFLAGS += -lclblast -lOpenCL
|
|
endif
|
|
OBJS += ggml-opencl.o
|
|
|
|
ggml-opencl.o: ggml-opencl.cpp ggml-opencl.h
|
|
$(CXX) $(CXXFLAGS) -c $< -o $@
|
|
endif # LLAMA_CLBLAST
|
|
|
|
ifdef LLAMA_METAL
|
|
CFLAGS += -DGGML_USE_METAL -DGGML_METAL_NDEBUG
|
|
CXXFLAGS += -DGGML_USE_METAL
|
|
LDFLAGS += -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
|
|
OBJS += ggml-metal.o
|
|
|
|
ggml-metal.o: ggml-metal.m ggml-metal.h
|
|
$(CC) $(CFLAGS) -c $< -o $@
|
|
endif # LLAMA_METAL
|
|
|
|
ifneq ($(filter aarch64%,$(UNAME_M)),)
|
|
# Apple M1, M2, etc.
|
|
# Raspberry Pi 3, 4, Zero 2 (64-bit)
|
|
CFLAGS += -mcpu=native
|
|
CXXFLAGS += -mcpu=native
|
|
endif
|
|
|
|
ifneq ($(filter armv6%,$(UNAME_M)),)
|
|
# Raspberry Pi 1, Zero
|
|
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
|
|
endif
|
|
|
|
ifneq ($(filter armv7%,$(UNAME_M)),)
|
|
# Raspberry Pi 2
|
|
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
|
|
endif
|
|
|
|
ifneq ($(filter armv8%,$(UNAME_M)),)
|
|
# Raspberry Pi 3, 4, Zero 2 (32-bit)
|
|
CFLAGS += -mfp16-format=ieee -mno-unaligned-access
|
|
endif
|
|
|
|
#
|
|
# Print build information
|
|
#
|
|
|
|
$(info I llama.cpp build info: )
|
|
$(info I UNAME_S: $(UNAME_S))
|
|
$(info I UNAME_P: $(UNAME_P))
|
|
$(info I UNAME_M: $(UNAME_M))
|
|
$(info I CFLAGS: $(CFLAGS))
|
|
$(info I CXXFLAGS: $(CXXFLAGS))
|
|
$(info I LDFLAGS: $(LDFLAGS))
|
|
$(info I CC: $(CCV))
|
|
$(info I CXX: $(CXXV))
|
|
$(info )
|
|
|
|
#
|
|
# Build library
|
|
#
|
|
|
|
ggml.o: ggml.c ggml.h ggml-cuda.h ggml-quants-k.h
|
|
$(CC) $(CFLAGS) -c $< -o $@
|
|
|
|
ggml-quants-k.o: ggml-quants-k.c ggml-quants-k.h ggml.h ggml-cuda.h
|
|
$(CC) $(CFLAGS) -c $< -o $@
|
|
|
|
llama.o: llama.cpp ggml.h ggml-cuda.h llama.h llama-util.h
|
|
$(CXX) $(CXXFLAGS) -c $< -o $@
|
|
|
|
common.o: examples/common.cpp examples/common.h
|
|
$(CXX) $(CXXFLAGS) -c $< -o $@
|
|
|
|
libllama.so: llama.o ggml.o $(OBJS)
|
|
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
|
|
|
clean:
|
|
rm -vf *.o main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server vdot build-info.h
|
|
|
|
#
|
|
# Examples
|
|
#
|
|
|
|
main: examples/main/main.cpp build-info.h ggml.o ggml-quants-k.o llama.o common.o $(OBJS)
|
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
|
@echo
|
|
@echo '==== Run ./main -h for help. ===='
|
|
@echo
|
|
|
|
quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o ggml-quants-k.o $(OBJS)
|
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
|
|
|
quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.h ggml.o llama.o ggml-quants-k.o $(OBJS)
|
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
|
|
|
perplexity: examples/perplexity/perplexity.cpp build-info.h ggml.o llama.o common.o ggml-quants-k.o $(OBJS)
|
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
|
|
|
embedding: examples/embedding/embedding.cpp build-info.h ggml.o llama.o common.o ggml-quants-k.o $(OBJS)
|
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
|
|
|
save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o common.o ggml-quants-k.o $(OBJS)
|
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
|
|
|
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp build-info.h ggml.o llama.o common.o $(OBJS)
|
|
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS)
|
|
|
|
build-info.h: $(wildcard .git/index) scripts/build-info.sh
|
|
@sh scripts/build-info.sh > $@.tmp
|
|
@if ! cmp -s $@.tmp $@; then \
|
|
mv $@.tmp $@; \
|
|
else \
|
|
rm $@.tmp; \
|
|
fi
|
|
|
|
#
|
|
# Tests
|
|
#
|
|
|
|
benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o $(OBJS)
|
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
|
./$@
|
|
|
|
vdot: pocs/vdot/vdot.cpp ggml.o ggml-quants-k.o $(OBJS)
|
|
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
|
|
|
.PHONY: tests clean
|
|
tests:
|
|
bash ./tests/run-tests.sh
|