mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-25 19:08:44 +01:00
1b9ae5189c
* (wip) argparser v3 * migrated * add test * handle env * fix linux build * add export-docs example * fix build (2) * skip build test-arg-parser on windows * update server docs * bring back missing --alias * bring back --n-predict * clarify test-arg-parser * small correction * add comments * fix args with 2 values * refine example-specific args * no more lamba capture Co-authored-by: slaren@users.noreply.github.com * params.sparams * optimize more * export-docs --> gen-docs
653 lines
23 KiB
C++
653 lines
23 KiB
C++
#include "common.h"
|
|
|
|
#include "console.h"
|
|
#include "llama.h"
|
|
|
|
#include <cassert>
|
|
#include <cinttypes>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <ctime>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
|
#include <signal.h>
|
|
#include <unistd.h>
|
|
#elif defined (_WIN32)
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#ifndef NOMINMAX
|
|
#define NOMINMAX
|
|
#endif
|
|
#include <windows.h>
|
|
#include <signal.h>
|
|
#endif
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
static llama_context ** g_ctx;
|
|
static llama_model ** g_model;
|
|
static gpt_sampler ** g_smpl;
|
|
static gpt_params * g_params;
|
|
static std::vector<llama_token> * g_input_tokens;
|
|
static std::ostringstream * g_output_ss;
|
|
static std::vector<llama_token> * g_output_tokens;
|
|
|
|
static bool is_interacting = false;
|
|
|
|
static void write_logfile(
|
|
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
|
const std::vector<llama_token> & input_tokens, const std::string & output,
|
|
const std::vector<llama_token> & output_tokens
|
|
) {
|
|
if (params.logdir.empty()) {
|
|
return;
|
|
}
|
|
|
|
const std::string timestamp = string_get_sortable_timestamp();
|
|
|
|
const bool success = fs_create_directory_with_parents(params.logdir);
|
|
if (!success) {
|
|
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
|
__func__, params.logdir.c_str());
|
|
return;
|
|
}
|
|
|
|
const std::string logfile_path = params.logdir + timestamp + ".yml";
|
|
FILE * logfile = fopen(logfile_path.c_str(), "w");
|
|
|
|
if (logfile == NULL) {
|
|
fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
|
|
return;
|
|
}
|
|
|
|
fprintf(logfile, "binary: infill\n");
|
|
char model_desc[128];
|
|
llama_model_desc(model, model_desc, sizeof(model_desc));
|
|
yaml_dump_non_result_info(logfile, params, ctx, timestamp, input_tokens, model_desc);
|
|
|
|
fprintf(logfile, "\n");
|
|
fprintf(logfile, "######################\n");
|
|
fprintf(logfile, "# Generation Results #\n");
|
|
fprintf(logfile, "######################\n");
|
|
fprintf(logfile, "\n");
|
|
|
|
yaml_dump_string_multiline(logfile, "output", output.c_str());
|
|
yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
|
|
|
|
llama_perf_dump_yaml(logfile, ctx);
|
|
fclose(logfile);
|
|
}
|
|
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
|
static void sigint_handler(int signo) {
|
|
if (signo == SIGINT) {
|
|
if (!is_interacting) {
|
|
is_interacting = true;
|
|
} else {
|
|
console::cleanup();
|
|
printf("\n");
|
|
gpt_perf_print(*g_ctx, *g_smpl);
|
|
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
|
|
_exit(130);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
int main(int argc, char ** argv) {
|
|
gpt_params params;
|
|
g_params = ¶ms;
|
|
|
|
auto options = gpt_params_parser_init(params, LLAMA_EXAMPLE_INFILL);
|
|
if (!gpt_params_parse(argc, argv, params, options)) {
|
|
return 1;
|
|
}
|
|
|
|
auto & sparams = params.sparams;
|
|
|
|
#ifndef LOG_DISABLE_LOGS
|
|
log_set_target(log_filename_generator("infill", "log"));
|
|
LOG_TEE("Log start\n");
|
|
log_dump_cmdline(argc, argv);
|
|
#endif // LOG_DISABLE_LOGS
|
|
|
|
console::init(params.simple_io, params.use_color);
|
|
atexit([]() { console::cleanup(); });
|
|
|
|
if (params.logits_all) {
|
|
printf("\n************\n");
|
|
printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
|
|
printf("************\n\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (params.embedding) {
|
|
printf("\n************\n");
|
|
printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
|
|
printf("************\n\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (params.n_ctx != 0 && params.n_ctx < 8) {
|
|
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
|
params.n_ctx = 8;
|
|
}
|
|
if (!params.interactive_first && (params.input_prefix.empty() && params.input_suffix.empty())) {
|
|
printf("\n************\n");
|
|
printf("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__);
|
|
printf("************\n\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (params.rope_freq_base != 0.0) {
|
|
LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
|
|
}
|
|
|
|
if (params.rope_freq_scale != 0.0) {
|
|
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
|
|
}
|
|
|
|
print_build_info();
|
|
|
|
LOG_TEE("%s: seed = %u\n", __func__, params.sparams.seed);
|
|
|
|
LOG("%s: llama backend init\n", __func__);
|
|
llama_backend_init();
|
|
llama_numa_init(params.numa);
|
|
|
|
llama_model * model = nullptr;
|
|
llama_context * ctx = nullptr;
|
|
gpt_sampler * smpl = nullptr;
|
|
|
|
g_model = &model;
|
|
g_ctx = &ctx;
|
|
g_smpl = &smpl;
|
|
|
|
// load the model and apply lora adapter, if any
|
|
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
|
|
llama_init_result llama_init = llama_init_from_gpt_params(params);
|
|
|
|
model = llama_init.model;
|
|
ctx = llama_init.context;
|
|
|
|
if (model == NULL) {
|
|
LOG_TEE("%s: error: unable to load model\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
const int n_ctx_train = llama_n_ctx_train(model);
|
|
const int n_ctx = llama_n_ctx(ctx);
|
|
LOG("n_ctx: %d\n", n_ctx);
|
|
|
|
if (n_ctx > n_ctx_train) {
|
|
LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
|
__func__, n_ctx_train, n_ctx);
|
|
}
|
|
|
|
// print system information
|
|
{
|
|
LOG_TEE("\n");
|
|
LOG_TEE("%s\n", gpt_params_get_system_info(params).c_str());
|
|
}
|
|
const bool add_bos = llama_add_bos_token(model);
|
|
GGML_ASSERT(!llama_add_eos_token(model));
|
|
LOG("add_bos: %d\n", add_bos);
|
|
|
|
std::vector<llama_token> embd_inp;
|
|
std::vector<llama_token> embd_end;
|
|
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false);
|
|
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false);
|
|
|
|
GGML_ASSERT(llama_token_prefix(model) >= 0);
|
|
GGML_ASSERT(llama_token_suffix(model) >= 0);
|
|
|
|
inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(model));
|
|
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(model));
|
|
|
|
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
|
|
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
|
|
if (add_bos) {
|
|
embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
|
|
}
|
|
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
|
|
|
|
const llama_token middle_token = llama_token_middle(model);
|
|
if (middle_token >= 0) {
|
|
embd_inp.push_back(middle_token);
|
|
}
|
|
|
|
LOG("prefix: \"%s\"\n", log_tostr(params.input_prefix));
|
|
LOG("suffix: \"%s\"\n", log_tostr(params.input_suffix));
|
|
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
|
|
|
// Should not run without any tokens
|
|
if (embd_inp.empty()) {
|
|
embd_inp.push_back(llama_token_bos(model));
|
|
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
|
}
|
|
|
|
if ((int) embd_inp.size() > n_ctx - 4) {
|
|
LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
|
|
return 1;
|
|
}
|
|
|
|
// number of tokens to keep when resetting context
|
|
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
|
|
params.n_keep = (int)embd_inp.size();
|
|
}
|
|
|
|
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
|
|
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());
|
|
|
|
|
|
// enable interactive mode if interactive start is specified
|
|
if (params.interactive_first) {
|
|
params.interactive = true;
|
|
}
|
|
|
|
if (params.verbose_prompt) {
|
|
LOG_TEE("\n");
|
|
LOG_TEE("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
|
LOG_TEE("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
|
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
|
LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
|
}
|
|
|
|
if (params.n_keep > 0) {
|
|
LOG_TEE("%s: static prompt based on n_keep: '", __func__);
|
|
for (int i = 0; i < params.n_keep; i++) {
|
|
LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
|
}
|
|
LOG_TEE("'\n");
|
|
}
|
|
LOG_TEE("\n");
|
|
}
|
|
|
|
if (params.interactive) {
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
|
struct sigaction sigint_action;
|
|
sigint_action.sa_handler = sigint_handler;
|
|
sigemptyset (&sigint_action.sa_mask);
|
|
sigint_action.sa_flags = 0;
|
|
sigaction(SIGINT, &sigint_action, NULL);
|
|
#elif defined (_WIN32)
|
|
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
|
|
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
|
|
};
|
|
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
|
#endif
|
|
|
|
LOG_TEE("%s: interactive mode on.\n", __func__);
|
|
|
|
if (params.input_prefix_bos) {
|
|
LOG_TEE("Input prefix with BOS\n");
|
|
}
|
|
|
|
if (!params.input_prefix.empty()) {
|
|
LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str());
|
|
}
|
|
|
|
if (!params.input_suffix.empty()) {
|
|
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
|
|
}
|
|
}
|
|
LOG_TEE("sampling: \n%s\n", sparams.print().c_str());
|
|
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
|
LOG_TEE("\n\n");
|
|
|
|
LOG_TEE("\n##### Infill mode #####\n\n");
|
|
if (params.infill) {
|
|
printf("\n************\n");
|
|
printf("no need to specify '--infill', always running infill\n");
|
|
printf("************\n\n");
|
|
}
|
|
if (params.interactive) {
|
|
const char *control_message;
|
|
if (params.multiline_input) {
|
|
control_message = " - To return control to LLaMA, end your input with '\\'.\n"
|
|
" - To return control without starting a new line, end your input with '/'.\n";
|
|
} else {
|
|
control_message = " - Press Return to return control to LLaMA.\n"
|
|
" - To return control without starting a new line, end your input with '/'.\n"
|
|
" - If you want to submit another line, end your input with '\\'.\n";
|
|
}
|
|
LOG_TEE("== Running in interactive mode. ==\n");
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
|
LOG_TEE( " - Press Ctrl+C to interject at any time.\n");
|
|
#endif
|
|
LOG_TEE( "%s\n", control_message);
|
|
|
|
is_interacting = params.interactive_first;
|
|
}
|
|
|
|
bool input_echo = true;
|
|
|
|
int n_past = 0;
|
|
int n_remain = params.n_predict;
|
|
int n_consumed = 0;
|
|
|
|
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
|
|
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
|
|
std::ostringstream output_ss; g_output_ss = &output_ss;
|
|
|
|
// the first thing we will do is to output the prompt, so set color accordingly
|
|
console::set_display(console::prompt);
|
|
|
|
std::vector<llama_token> embd;
|
|
|
|
smpl = gpt_sampler_init(model, sparams);
|
|
|
|
while (n_remain != 0 || params.interactive) {
|
|
// predict
|
|
if (!embd.empty()) {
|
|
// Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
|
|
// --prompt or --file which uses the same value.
|
|
int max_embd_size = n_ctx - 4;
|
|
|
|
// Ensure the input doesn't exceed the context size by truncating embd if necessary.
|
|
if ((int) embd.size() > max_embd_size) {
|
|
const int skipped_tokens = (int) embd.size() - max_embd_size;
|
|
embd.resize(max_embd_size);
|
|
|
|
console::set_display(console::error);
|
|
printf("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
|
|
console::set_display(console::reset);
|
|
fflush(stdout);
|
|
}
|
|
|
|
// infinite text generation via context swapping
|
|
// if we run out of context:
|
|
// - take the n_keep first tokens from the original prompt (via n_past)
|
|
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
|
|
if (n_past + (int) embd.size() > n_ctx) {
|
|
if (params.n_predict == -2) {
|
|
LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
|
|
break;
|
|
}
|
|
|
|
const int n_left = n_past - params.n_keep - 1;
|
|
const int n_discard = n_left/2;
|
|
|
|
LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
|
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
|
|
|
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
|
|
llama_kv_cache_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
|
|
|
|
n_past -= n_discard;
|
|
|
|
LOG("after swap: n_past = %d\n", n_past);
|
|
|
|
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
|
|
|
}
|
|
|
|
// evaluate tokens in batches
|
|
// embd is typically prepared beforehand to fit within a batch, but not always
|
|
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
|
|
int n_eval = (int) embd.size() - i;
|
|
if (n_eval > params.n_batch) {
|
|
n_eval = params.n_batch;
|
|
}
|
|
|
|
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
|
|
|
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
|
|
LOG_TEE("%s : failed to eval\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
n_past += n_eval;
|
|
|
|
LOG("n_past = %d\n", n_past);
|
|
}
|
|
|
|
}
|
|
|
|
embd.clear();
|
|
|
|
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
|
const llama_token id = gpt_sampler_sample(smpl, ctx, -1);
|
|
|
|
gpt_sampler_accept(smpl, id, true);
|
|
|
|
// LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, smpl->prev.to_vector()).c_str());
|
|
|
|
embd.push_back(id);
|
|
|
|
// echo this to console
|
|
input_echo = true;
|
|
|
|
// decrement remaining sampling budget
|
|
--n_remain;
|
|
|
|
LOG("n_remain: %d\n", n_remain);
|
|
} else {
|
|
// some user input remains from prompt or interaction, forward it to processing
|
|
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
|
while ((int) embd_inp.size() > n_consumed) {
|
|
embd.push_back(embd_inp[n_consumed]);
|
|
|
|
// push the prompt in the sampling context in order to apply repetition penalties later
|
|
// for the prompt, we don't apply grammar rules
|
|
gpt_sampler_accept(smpl, embd_inp[n_consumed], false);
|
|
|
|
++n_consumed;
|
|
if ((int) embd.size() >= params.n_batch) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// display text
|
|
if (input_echo) {
|
|
for (auto id : embd) {
|
|
const std::string token_str = llama_token_to_piece(ctx, id);
|
|
printf("%s", token_str.c_str());
|
|
|
|
if (embd.size() > 1) {
|
|
input_tokens.push_back(id);
|
|
} else {
|
|
output_tokens.push_back(id);
|
|
output_ss << token_str;
|
|
}
|
|
}
|
|
fflush(stdout);
|
|
}
|
|
// reset color to default if we there is no pending user input
|
|
if (input_echo && (int) embd_inp.size() == n_consumed) {
|
|
console::set_display(console::reset);
|
|
}
|
|
|
|
// if not currently processing queued inputs;
|
|
if ((int) embd_inp.size() <= n_consumed) {
|
|
// deal with eot token in infill mode
|
|
if ((gpt_sampler_last(smpl) == llama_token_eot(model) || is_interacting) && params.interactive){
|
|
if (is_interacting && !params.interactive_first) {
|
|
// print an eot token
|
|
printf("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
|
}
|
|
fflush(stdout);
|
|
printf("\n");
|
|
console::set_display(console::user_input);
|
|
std::string buffer;
|
|
std::string line;
|
|
bool another_line=true;
|
|
// set a new prefix via stdin
|
|
do {
|
|
another_line = console::readline(line, params.multiline_input);
|
|
buffer += line;
|
|
} while (another_line);
|
|
// check if we got an empty line, if so we use the old input
|
|
if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
|
|
params.input_prefix = buffer;
|
|
}
|
|
buffer.clear();
|
|
// set a new suffix via stdin
|
|
do {
|
|
another_line = console::readline(line, params.multiline_input);
|
|
buffer += line;
|
|
} while (another_line);
|
|
// check if we got an empty line
|
|
if (!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
|
|
params.input_suffix = buffer;
|
|
}
|
|
buffer.clear();
|
|
// done taking input, reset color
|
|
console::set_display(console::reset);
|
|
|
|
if (params.escape) {
|
|
//process escape sequences, for the initial prompt this is done in common.cpp when we load the params, but for the interactive mode we need to do it here
|
|
string_process_escapes(params.input_prefix);
|
|
string_process_escapes(params.input_suffix);
|
|
}
|
|
|
|
// tokenize new prefix and suffix
|
|
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false);
|
|
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false);
|
|
|
|
inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(model));
|
|
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(model));
|
|
|
|
embd_inp = params.spm_infill ? inp_sfx : inp_pfx;
|
|
embd_end = params.spm_infill ? inp_pfx : inp_sfx;
|
|
if (add_bos) {
|
|
embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
|
|
}
|
|
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
|
|
|
|
if (middle_token >= 0) {
|
|
embd_inp.push_back(middle_token);
|
|
}
|
|
|
|
embd.clear();
|
|
n_remain = params.n_predict;
|
|
n_past = 0;
|
|
n_consumed = 0;
|
|
// LOG_TEE("took new input\n");
|
|
is_interacting = false;
|
|
}
|
|
// deal with end of generation tokens in interactive mode
|
|
else if (llama_token_is_eog(model, gpt_sampler_last(smpl))) {
|
|
LOG("found EOS token\n");
|
|
|
|
if (params.interactive) {
|
|
|
|
is_interacting = true;
|
|
printf("\n");
|
|
console::set_display(console::user_input);
|
|
fflush(stdout);
|
|
}
|
|
}
|
|
|
|
if (n_past > 0 && is_interacting && !params.interactive) {
|
|
LOG("waiting for user input\n");
|
|
|
|
if (params.input_prefix_bos) {
|
|
LOG("adding input prefix BOS token\n");
|
|
embd_inp.push_back(llama_token_bos(model));
|
|
}
|
|
|
|
std::string buffer;
|
|
if (!params.input_prefix.empty()) {
|
|
LOG("appending input prefix: '%s'\n", params.input_prefix.c_str());
|
|
buffer += params.input_prefix;
|
|
printf("%s", buffer.c_str());
|
|
}
|
|
|
|
std::string line;
|
|
bool another_line = true;
|
|
do {
|
|
another_line = console::readline(line, params.multiline_input);
|
|
buffer += line;
|
|
} while (another_line);
|
|
|
|
// done taking input, reset color
|
|
console::set_display(console::reset);
|
|
|
|
// Add tokens to embd only if the input buffer is non-empty
|
|
// Entering a empty line lets the user pass control back
|
|
if (buffer.length() > 1) {
|
|
// append input suffix if any
|
|
if (!params.input_suffix.empty()) {
|
|
LOG("appending input suffix: '%s'\n", params.input_suffix.c_str());
|
|
buffer += params.input_suffix;
|
|
printf("%s", params.input_suffix.c_str());
|
|
}
|
|
|
|
LOG("buffer: '%s'\n", buffer.c_str());
|
|
|
|
const size_t original_size = embd_inp.size();
|
|
|
|
const auto line_inp = ::llama_tokenize(ctx, buffer, false);
|
|
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
|
|
|
|
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
|
|
|
for (size_t i = original_size; i < embd_inp.size(); ++i) {
|
|
const llama_token token = embd_inp[i];
|
|
output_tokens.push_back(token);
|
|
output_ss << llama_token_to_piece(ctx, token);
|
|
}
|
|
|
|
n_remain -= line_inp.size();
|
|
LOG("n_remain: %d\n", n_remain);
|
|
} else {
|
|
LOG("empty line, passing control back\n");
|
|
}
|
|
|
|
input_echo = false; // do not echo this again
|
|
}
|
|
|
|
if (n_past > 0) {
|
|
if (is_interacting) {
|
|
gpt_sampler_reset(smpl);
|
|
}
|
|
is_interacting = false;
|
|
}
|
|
}
|
|
|
|
// end of generation
|
|
if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !params.interactive) {
|
|
break;
|
|
}
|
|
|
|
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
|
|
// We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
|
|
if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
|
|
n_remain = params.n_predict;
|
|
is_interacting = true;
|
|
}
|
|
}
|
|
if (!params.interactive && n_remain <= 0) {
|
|
printf("%s", llama_token_to_piece(ctx, llama_token_eot(model)).c_str());
|
|
fflush(stdout);
|
|
}
|
|
|
|
LOG_TEE("\n");
|
|
gpt_perf_print(ctx, smpl);
|
|
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
|
|
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
|
|
gpt_sampler_free(smpl);
|
|
llama_backend_free();
|
|
|
|
#ifndef LOG_DISABLE_LOGS
|
|
LOG_TEE("Log end\n");
|
|
#endif // LOG_DISABLE_LOGS
|
|
|
|
return 0;
|
|
}
|