1
0
mirror of https://github.com/ggerganov/llama.cpp.git synced 2025-01-16 15:18:26 +01:00
llama.cpp/tests/test-tokenizer-random.py
jaime-m-p 37bef89433
tokenizer : BPE fixes ()
* Random test: add_bos_token, add_eos_token
* Random test: add BPE models for testing
* Custom regex split fails with codepoint 0
* Fix falcon punctuation regex
* Refactor llm_tokenizer_bpe: move code to constructor
* Move 'add_special_bos/eos' logic to llm_tokenizer_bpe
* Move tokenizer flags to vocab structure.
* Default values for special_add_bos/eos
* Build vocab.special_tokens_cache using vocab token types
* Generalize 'jina-v2' per token attributes
* Fix unicode whitespaces (deepseek-coder, deepseek-llm)
* Skip missing byte tokens (falcon)
* Better unicode data generation
* Replace char32_t with uint32_t
2024-06-18 18:40:52 +02:00

432 lines
15 KiB
Python
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Test libllama tokenizer == AutoTokenizer.
# Brute force random words/text generation.
#
# Sample usage:
#
# python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe
#
import time
import logging
import argparse
import subprocess
import random
import unicodedata
from typing import Callable, Iterator
import cffi
from transformers import AutoTokenizer
logger = logging.getLogger("test-tokenizer-random")
class LibLlama:
DEFAULT_PATH_LLAMA_H = "./llama.h"
DEFAULT_PATH_LIBLLAMA = "./build/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON
def __init__(self, path_llama_h: str = None, path_libllama: str = None):
path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H
path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA
(self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_libllama)
self.lib.llama_backend_init()
def _load_libllama_cffi(self, path_llama_h: str, path_libllama: str):
cmd = ["gcc", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)=", path_llama_h]
res = subprocess.run(cmd, stdout=subprocess.PIPE)
assert (res.returncode == 0)
source = res.stdout.decode()
ffi = cffi.FFI()
if True: # workarounds for pycparser
source = "typedef struct { } __builtin_va_list;" + "\n" + source
source = source.replace("sizeof (int)", str(ffi.sizeof("int")))
source = source.replace("sizeof (void *)", str(ffi.sizeof("void*")))
source = source.replace("sizeof (size_t)", str(ffi.sizeof("size_t")))
source = source.replace("sizeof(int32_t)", str(ffi.sizeof("int32_t")))
ffi.cdef(source, override=True)
lib = ffi.dlopen(path_libllama)
return (ffi, lib)
def model_default_params(self, **kwargs):
mparams = self.lib.llama_model_default_params()
for k, v in kwargs.items():
setattr(mparams, k, v)
return mparams
def context_default_params(self, **kwargs):
cparams = self.lib.llama_context_default_params()
for k, v in kwargs.items():
setattr(cparams, k, v)
return cparams
class LibLlamaModel:
def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}):
self.lib = libllama.lib
self.ffi = libllama.ffi
if isinstance(mparams, dict):
mparams = libllama.model_default_params(**mparams)
self.model = self.lib.llama_load_model_from_file(path_model.encode(), mparams)
if not self.model:
raise RuntimeError("error: failed to load model '%s'" % path_model)
if isinstance(cparams, dict):
cparams = libllama.context_default_params(**cparams)
self.ctx = self.lib.llama_new_context_with_model(self.model, cparams)
if not self.ctx:
raise RuntimeError("error: failed to create context for model '%s'" % path_model)
n_tokens_max = self.lib.llama_n_ctx(self.ctx)
self.token_ids = self.ffi.new("llama_token[]", n_tokens_max)
def free(self):
if self.ctx:
self.lib.llama_free(self.ctx)
if self.model:
self.lib.llama_free_model(self.model)
self.ctx = None
self.model = None
self.lib = None
def tokenize(self, text: str, n_tokens_max: int = 0, add_special: bool = False, parse_special: bool = False) -> list[int]:
n_tokens_max = n_tokens_max if n_tokens_max > 0 else len(self.token_ids)
text = text.encode("utf-8")
num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, n_tokens_max, add_special, parse_special)
if num < 0:
return []
return list(self.token_ids[0:num])
def generator_custom_text() -> Iterator[str]:
"""General tests"""
yield from [
"",
" ",
" ",
" ",
"\t",
"\n",
"\n\n",
"\n\n\n",
"\t\n",
"Hello world",
" Hello world",
"Hello World",
" Hello World",
" Hello World!",
"Hello, world!",
" Hello, world!",
" this is 🦙.cpp",
"w048 7tuijk dsdfhu",
"нещо на Български",
"កាន់តែពិសេសអាចខលចេញ",
"🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
"Hello",
" Hello",
" Hello",
" Hello",
" Hello",
" Hello\n Hello",
" (",
"\n =",
"' era",
"Hello, y'all! How are you 😁 ?我想在apple工作1314151天",
"3",
"33",
"333",
"3333",
"33333",
"333333",
"3333333",
"33333333",
"333333333",
]
def generator_custom_text_edge_cases() -> Iterator[str]:
"""Edge cases found while debugging"""
yield from [
'\x1f-a', # unicode_ranges_control, {0x00001C, 0x00001F}
'¼-a', # unicode_ranges_digit, 0x00BC
'½-a', # unicode_ranges_digit, 0x00BD
'¾-a', # unicode_ranges_digit, 0x00BE
'a b', # unicode_ranges_digit, 0x3007
'Ⅵ-a', # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms
'\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM)
'Cửa Việt', # llama-3, ignore_merges = true
'<s>a', # Phi-3 fail
'<unk><|endoftext|><s>', # Phi-3 fail
'a\na', # bert fail
'"`', # falcon
' \u2e4e', # falcon
'a\xa0\xa0\x00b', # jina-v2-es
'one <mask>', # jina-v2-es <mask> lstrip=true
'a </s> b', # rstrip phi-3
'a <mask> b', # lstrip jina-v2
'\xa0aC', # deepseek
]
def generator_vocab_words(vocab: list[str]) -> Iterator[str]:
"""Brute force check all vocab words"""
yield from vocab
def generator_added_lr_strip(tokenizer) -> Iterator[str]:
WHITESPACES = ["", " ", " ", " "]
special_tokens = list(tokenizer.all_special_tokens)
added_tokens = list(tokenizer.added_tokens_encoder)
all_tokens = list(sorted(set(special_tokens + added_tokens)))
for token in all_tokens:
for lstrip in WHITESPACES:
for rstrip in WHITESPACES:
yield lstrip + token + rstrip
yield "a" + lstrip + token + rstrip
yield lstrip + token + rstrip + "z"
yield "a" + lstrip + token + rstrip + "z"
def generator_random_added_tokens(tokenizer, iterations=100) -> Iterator[str]:
special_tokens = list(tokenizer.all_special_tokens)
added_tokens = list(tokenizer.added_tokens_encoder)
separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"]
all_tokens = list(sorted(set(special_tokens + added_tokens + separations)))
rand = random.Random()
for m in range(iterations):
rand.seed(m)
words = rand.choices(all_tokens, k=500)
if words and words[0] == tokenizer.bos_token: # skip spam warning of double BOS
while len(words) > 1 and words[1] == tokenizer.bos_token: # leave one starting BOS
words.pop(0)
if tokenizer.add_bos_token: # drop all starting BOS
words.pop(0)
if words and words[-1] == tokenizer.eos_token: # skip spam warning of double EOS
while len(words) > 1 and words[-2] == tokenizer.eos_token: # leave one trailing EOS
words.pop(-1)
if tokenizer.add_bos_token: # drop all trailing EOS
words.pop(-1)
yield "".join(words)
def generator_random_chars(iterations=100) -> Iterator[str]:
"""Brute force random text with simple characters"""
NUM_WORDS = 400
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
CHARS = list(sorted(set("""
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
ÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛÄËÏÖÜ
áéíóúàèìòùâêîôûäëïöü
.-,*/-+ª!"·$%&/()=?¿[]{}<>\\|@#~½¬~;:_
""")))
rand = random.Random()
for m in range(iterations):
rand.seed(m)
text = []
for _ in range(NUM_WORDS):
k = rand.randint(1, 7)
word = rand.choices(CHARS, k=k)
word.append(rand.choice(WHITESPACES))
text.append("".join(word))
yield "".join(text)
def generator_unicodes() -> Iterator[str]:
"""Iterate unicode characters"""
MAX_CODEPOINTS = 0x30000 # 0x110000
def _valid(cpt):
if cpt >= 0x30000: # unassigned and supplement­ary
return False
if 0x00D800 <= cpt <= 0x00F8FF: # Surrogates
return False
if unicodedata.category(chr(cpt)) == "Cn":
return False
return True
characters = [chr(cpt) for cpt in range(1, MAX_CODEPOINTS) if _valid(cpt)]
yield from characters
def generator_random_unicodes(iterations=100) -> Iterator[str]:
"""Brute force random text with unicode characters"""
NUM_WORDS = 200
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
characters = list(generator_unicodes())
rand = random.Random()
for m in range(iterations):
rand.seed(m)
text = []
for _ in range(NUM_WORDS):
k = rand.randint(1, 7)
word = rand.choices(characters, k=k)
word.append(rand.choice(WHITESPACES))
text.append("".join(word))
yield "".join(text)
def generator_random_vocab_chars(vocab: list[str], iterations=100) -> Iterator[str]:
"""Brute force random text with vocab characters"""
vocab_chars = set()
for word in vocab:
vocab_chars.update(word)
vocab_chars = list(sorted(vocab_chars))
rand = random.Random()
for m in range(iterations):
rand.seed(m)
text = rand.choices(vocab_chars, k=1024)
yield "".join(text)
def generator_random_vocab_words(vocab: list[str], iterations=100) -> Iterator[str]:
"""Brute force random text from vocab words"""
vocab = [w.strip() for w in vocab]
yield from vocab
rand = random.Random()
for m in range(iterations):
rand.seed(m)
text = []
num_words = rand.randint(300, 400)
for i in range(num_words):
k = rand.randint(1, 3)
words = rand.choices(vocab, k=k)
sep = rand.choice(" \n\r\t")
text.append("".join(words) + sep)
yield "".join(text)
def compare_tokenizers(func_tokenize1: Callable, func_tokenize2: Callable, generator: Iterator[str]):
def find_first_mismatch(ids1: list[int], ids2: list[int]):
for i, (a, b) in enumerate(zip(ids1, ids2)):
if a != b:
return i
if len(ids1) == len(ids2):
return -1
return min(len(ids1), len(ids2))
t_tokenizer1 = 0
t_tokenizer2 = 0
t_start = time.perf_counter()
num_errors = 10
logger.info("%s: %s" % (generator.__name__, "ini"))
for text in generator:
# print(repr(text), hex(ord(text[0])), text.encode())
t0 = time.perf_counter()
ids1 = func_tokenize1(text)
t1 = time.perf_counter()
ids2 = func_tokenize2(text)
t2 = time.perf_counter()
t_tokenizer1 += t1 - t0
t_tokenizer2 += t2 - t1
if ids1 != ids2:
i = find_first_mismatch(ids1, ids2)
ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1]
ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1]
logger.error(" TokenIDs: " + str(ids1))
logger.error(" Expected: " + str(ids2))
# raise Exception()
num_errors += 1
if num_errors > 10:
break
t_total = time.perf_counter() - t_start
logger.info("%s: end, tok1: %.3f tok2: %.3f total: %.3f" % (generator.__name__, t_tokenizer1, t_tokenizer2, t_total))
def main(argv: list[str] = None):
parser = argparse.ArgumentParser()
parser.add_argument("vocab_file", help="path to vocab 'gguf' file")
parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
args = parser.parse_args(argv)
logging.basicConfig(level = logging.DEBUG if args.verbose else logging.INFO)
logger.info(f"VOCABFILE: '{args.vocab_file}'")
model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
def func_tokenize1(text: str):
return model.tokenize(text, add_special=True, parse_special=True)
def func_tokenize2(text: str):
return tokenizer.encode(text, add_special_tokens=True)
ids = func_tokenize2("a")
assert 1 <= len(ids) <= 3
add_bos_token = len(ids) > 1 and tokenizer.bos_token_id == ids[0]
add_eos_token = len(ids) > 1 and tokenizer.eos_token_id == ids[-1]
tokenizer.add_bos_token = getattr(tokenizer, "add_bos_token", add_bos_token)
tokenizer.add_eos_token = getattr(tokenizer, "add_eos_token", add_eos_token)
vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True)))
compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text())
compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
compare_tokenizers(func_tokenize1, func_tokenize2, generator_unicodes())
compare_tokenizers(func_tokenize1, func_tokenize2, generator_vocab_words(vocab))
compare_tokenizers(func_tokenize1, func_tokenize2, generator_added_lr_strip(tokenizer))
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_added_tokens(tokenizer, 10_000))
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_chars(10_000))
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_unicodes(10_000))
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 5_000))
model.free()
if __name__ == "__main__":
# main()
logging.basicConfig(
level = logging.DEBUG,
format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s",
datefmt = "%Y-%m-%d %H:%M:%S",
filename = logger.name + ".log",
filemode = "a"
)
path_tokenizers = "./models/tokenizers/"
path_vocab_format = "./models/ggml-vocab-%s.gguf"
# import os
# tokenizers = os.listdir(path_tokenizers)
tokenizers = [
# "llama-spm", # SPM
# "phi-3", # SPM
# "bert-bge", # WPM
# "jina-v2-en", # WPM
"gpt-2", # BPE
"llama-bpe", # BPE
"falcon", # BPE
"starcoder", # BPE
"jina-v2-es", # BPE
"jina-v2-de", # BPE
"jina-v2-code", # BPE
"smaug-bpe", # BPE
"phi-2", # BPE
"deepseek-coder", # BPE
"deepseek-llm", # BPE
]
for tokenizer in tokenizers:
logger.info("=" * 50)
logger.info(f"TOKENIZER: '{tokenizer}'")
vocab_file = path_vocab_format % tokenizer
dir_tokenizer = path_tokenizers + "/" + tokenizer
main([vocab_file, dir_tokenizer, "--verbose"])