mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-04 01:57:53 +01:00
262 lines
7.9 KiB
C++
262 lines
7.9 KiB
C++
#include "ggml.h"
|
|
|
|
#include <cstdio>
|
|
#include <cinttypes>
|
|
#include <string>
|
|
#include <sstream>
|
|
#include <fstream>
|
|
#include <vector>
|
|
|
|
#undef MIN
|
|
#undef MAX
|
|
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
|
|
|
template <typename T>
|
|
static std::string to_string(const T & val) {
|
|
std::stringstream ss;
|
|
ss << val;
|
|
return ss.str();
|
|
}
|
|
|
|
static bool gguf_ex_write(const std::string & fname) {
|
|
struct gguf_context * ctx = gguf_init_empty();
|
|
|
|
gguf_set_val_u8 (ctx, "some.parameter.uint8", 0x12);
|
|
gguf_set_val_i8 (ctx, "some.parameter.int8", -0x13);
|
|
gguf_set_val_u16 (ctx, "some.parameter.uint16", 0x1234);
|
|
gguf_set_val_i16 (ctx, "some.parameter.int16", -0x1235);
|
|
gguf_set_val_u32 (ctx, "some.parameter.uint32", 0x12345678);
|
|
gguf_set_val_i32 (ctx, "some.parameter.int32", -0x12345679);
|
|
gguf_set_val_f32 (ctx, "some.parameter.float32", 0.123456789f);
|
|
gguf_set_val_u64 (ctx, "some.parameter.uint64", 0x123456789abcdef0ull);
|
|
gguf_set_val_i64 (ctx, "some.parameter.int64", -0x123456789abcdef1ll);
|
|
gguf_set_val_f64 (ctx, "some.parameter.float64", 0.1234567890123456789);
|
|
gguf_set_val_bool(ctx, "some.parameter.bool", true);
|
|
gguf_set_val_str (ctx, "some.parameter.string", "hello world");
|
|
|
|
gguf_set_arr_data(ctx, "some.parameter.arr.i16", GGUF_TYPE_INT16, std::vector<int16_t>{ 1, 2, 3, 4, }.data(), 4);
|
|
gguf_set_arr_data(ctx, "some.parameter.arr.f32", GGUF_TYPE_FLOAT32, std::vector<float>{ 3.145f, 2.718f, 1.414f, }.data(), 3);
|
|
gguf_set_arr_str (ctx, "some.parameter.arr.str", std::vector<const char *>{ "hello", "world", "!" }.data(), 3);
|
|
|
|
struct ggml_init_params params = {
|
|
/*.mem_size =*/ 128ull*1024ull*1024ull,
|
|
/*.mem_buffer =*/ NULL,
|
|
/*.no_alloc =*/ false,
|
|
};
|
|
|
|
struct ggml_context * ctx_data = ggml_init(params);
|
|
|
|
const int n_tensors = 10;
|
|
|
|
// tensor infos
|
|
for (int i = 0; i < n_tensors; ++i) {
|
|
const std::string name = "tensor_" + to_string(i);
|
|
|
|
int64_t ne[GGML_MAX_DIMS] = { 1 };
|
|
int32_t n_dims = rand() % GGML_MAX_DIMS + 1;
|
|
|
|
for (int j = 0; j < n_dims; ++j) {
|
|
ne[j] = rand() % 10 + 1;
|
|
}
|
|
|
|
struct ggml_tensor * cur = ggml_new_tensor(ctx_data, GGML_TYPE_F32, n_dims, ne);
|
|
ggml_set_name(cur, name.c_str());
|
|
|
|
{
|
|
float * data = (float *) cur->data;
|
|
for (int j = 0; j < ggml_nelements(cur); ++j) {
|
|
data[j] = 100 + i;
|
|
}
|
|
}
|
|
|
|
gguf_add_tensor(ctx, cur);
|
|
}
|
|
|
|
gguf_write_to_file(ctx, fname.c_str(), false);
|
|
|
|
printf("%s: wrote file '%s;\n", __func__, fname.c_str());
|
|
|
|
ggml_free(ctx_data);
|
|
gguf_free(ctx);
|
|
|
|
return true;
|
|
}
|
|
|
|
// just read tensor info
|
|
static bool gguf_ex_read_0(const std::string & fname) {
|
|
struct gguf_init_params params = {
|
|
/*.no_alloc = */ false,
|
|
/*.ctx = */ NULL,
|
|
};
|
|
|
|
struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
|
|
|
|
if (!ctx) {
|
|
fprintf(stderr, "%s: failed to load '%s'\n", __func__, fname.c_str());
|
|
return false;
|
|
}
|
|
|
|
printf("%s: version: %d\n", __func__, gguf_get_version(ctx));
|
|
printf("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
|
|
printf("%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx));
|
|
|
|
// kv
|
|
{
|
|
const int n_kv = gguf_get_n_kv(ctx);
|
|
|
|
printf("%s: n_kv: %d\n", __func__, n_kv);
|
|
|
|
for (int i = 0; i < n_kv; ++i) {
|
|
const char * key = gguf_get_key(ctx, i);
|
|
|
|
printf("%s: kv[%d]: key = %s\n", __func__, i, key);
|
|
}
|
|
}
|
|
|
|
// find kv string
|
|
{
|
|
const char * findkey = "some.parameter.string";
|
|
|
|
const int keyidx = gguf_find_key(ctx, findkey);
|
|
if (keyidx == -1) {
|
|
printf("%s: find key: %s not found.\n", __func__, findkey);
|
|
} else {
|
|
const char * key_value = gguf_get_val_str(ctx, keyidx);
|
|
printf("%s: find key: %s found, kv[%d] value = %s\n", __func__, findkey, keyidx, key_value);
|
|
}
|
|
}
|
|
|
|
// tensor info
|
|
{
|
|
const int n_tensors = gguf_get_n_tensors(ctx);
|
|
|
|
printf("%s: n_tensors: %d\n", __func__, n_tensors);
|
|
|
|
for (int i = 0; i < n_tensors; ++i) {
|
|
const char * name = gguf_get_tensor_name (ctx, i);
|
|
const size_t offset = gguf_get_tensor_offset(ctx, i);
|
|
|
|
printf("%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
|
|
}
|
|
}
|
|
|
|
gguf_free(ctx);
|
|
|
|
return true;
|
|
}
|
|
|
|
// read and create ggml_context containing the tensors and their data
|
|
static bool gguf_ex_read_1(const std::string & fname, bool check_data) {
|
|
struct ggml_context * ctx_data = NULL;
|
|
|
|
struct gguf_init_params params = {
|
|
/*.no_alloc = */ false,
|
|
/*.ctx = */ &ctx_data,
|
|
};
|
|
|
|
struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
|
|
|
|
printf("%s: version: %d\n", __func__, gguf_get_version(ctx));
|
|
printf("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
|
|
printf("%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx));
|
|
|
|
// kv
|
|
{
|
|
const int n_kv = gguf_get_n_kv(ctx);
|
|
|
|
printf("%s: n_kv: %d\n", __func__, n_kv);
|
|
|
|
for (int i = 0; i < n_kv; ++i) {
|
|
const char * key = gguf_get_key(ctx, i);
|
|
|
|
printf("%s: kv[%d]: key = %s\n", __func__, i, key);
|
|
}
|
|
}
|
|
|
|
// tensor info
|
|
{
|
|
const int n_tensors = gguf_get_n_tensors(ctx);
|
|
|
|
printf("%s: n_tensors: %d\n", __func__, n_tensors);
|
|
|
|
for (int i = 0; i < n_tensors; ++i) {
|
|
const char * name = gguf_get_tensor_name (ctx, i);
|
|
const size_t offset = gguf_get_tensor_offset(ctx, i);
|
|
|
|
printf("%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
|
|
}
|
|
}
|
|
|
|
// data
|
|
{
|
|
const int n_tensors = gguf_get_n_tensors(ctx);
|
|
|
|
for (int i = 0; i < n_tensors; ++i) {
|
|
printf("%s: reading tensor %d data\n", __func__, i);
|
|
|
|
const char * name = gguf_get_tensor_name(ctx, i);
|
|
|
|
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
|
|
|
|
printf("%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n", __func__, i, ggml_n_dims(cur), cur->name, cur->data);
|
|
|
|
// print first 10 elements
|
|
const float * data = (const float *) cur->data;
|
|
|
|
printf("%s data[:10] : ", name);
|
|
for (int j = 0; j < MIN(10, ggml_nelements(cur)); ++j) {
|
|
printf("%f ", data[j]);
|
|
}
|
|
printf("\n\n");
|
|
|
|
// check data
|
|
if (check_data) {
|
|
const float * data = (const float *) cur->data;
|
|
for (int j = 0; j < ggml_nelements(cur); ++j) {
|
|
if (data[j] != 100 + i) {
|
|
fprintf(stderr, "%s: tensor[%d]: data[%d] = %f\n", __func__, i, j, data[j]);
|
|
gguf_free(ctx);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
printf("%s: ctx_data size: %zu\n", __func__, ggml_get_mem_size(ctx_data));
|
|
|
|
ggml_free(ctx_data);
|
|
gguf_free(ctx);
|
|
|
|
return true;
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
if (argc < 3) {
|
|
printf("usage: %s data.gguf r|w [n]\n", argv[0]);
|
|
printf("r: read data.gguf file\n");
|
|
printf("w: write data.gguf file\n");
|
|
printf("n: no check of tensor data\n");
|
|
return -1;
|
|
}
|
|
bool check_data = true;
|
|
if (argc == 4) {
|
|
check_data = false;
|
|
}
|
|
|
|
const std::string fname(argv[1]);
|
|
const std::string mode (argv[2]);
|
|
|
|
GGML_ASSERT((mode == "r" || mode == "w") && "mode must be r or w");
|
|
|
|
if (mode == "w") {
|
|
GGML_ASSERT(gguf_ex_write(fname) && "failed to write gguf file");
|
|
} else if (mode == "r") {
|
|
GGML_ASSERT(gguf_ex_read_0(fname) && "failed to read gguf file");
|
|
GGML_ASSERT(gguf_ex_read_1(fname, check_data) && "failed to read gguf file");
|
|
}
|
|
|
|
return 0;
|
|
}
|