mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-01 00:39:00 +01:00
784 lines
26 KiB
VimL
784 lines
26 KiB
VimL
" LLM-based text completion using llama.cpp
|
|
"
|
|
" requires:
|
|
"
|
|
" - neovim or vim
|
|
" - curl
|
|
" - llama.cpp server instance
|
|
" - FIM-compatible model
|
|
"
|
|
" sample config:
|
|
"
|
|
" - Tab - accept the current suggestion
|
|
" - Shift+Tab - accept just the first line of the suggestion
|
|
" - Ctrl+F - toggle FIM completion manually
|
|
"
|
|
" make symlink or copy this file to ~/.config/nvim/autoload/llama.vim
|
|
"
|
|
" start the llama.cpp server with a FIM-compatible model. for example:
|
|
"
|
|
" $ llama-server -m {model.gguf} --port 8012 -ngl 99 -fa -dt 0.1 --ubatch-size 512 --batch-size 1024 --cache-reuse 256
|
|
"
|
|
" --batch-size [512, model max context]
|
|
"
|
|
" adjust the batch size to control how much of the provided local context will be used during the inference
|
|
" lower values will use smaller part of the context around the cursor, which will result in faster processing
|
|
"
|
|
" --ubatch-size [64, 2048]
|
|
"
|
|
" chunks the batch into smaller chunks for faster processing
|
|
" depends on the specific hardware. use llama-bench to profile and determine the best size
|
|
"
|
|
" --cache-reuse (ge:llama_config.n_predict, 1024]
|
|
"
|
|
" this should be either 0 (disabled) or strictly larger than g:llama_config.n_predict
|
|
" using non-zero value enables context reuse on the server side which dramatically improves the performance at
|
|
" large contexts. a value of 256 should be good for all cases
|
|
"
|
|
" run this once to initialise llama.vim:
|
|
"
|
|
" :call llama#init()
|
|
"
|
|
" more info: https://github.com/ggerganov/llama.cpp/pull/9787
|
|
"
|
|
|
|
" colors (adjust to your liking)
|
|
highlight llama_hl_hint guifg=#ff772f ctermfg=202
|
|
highlight llama_hl_info guifg=#77ff2f ctermfg=119
|
|
|
|
" general parameters:
|
|
"
|
|
" endpoint: llama.cpp server endpoint
|
|
" n_prefix: number of lines before the cursor location to include in the local prefix
|
|
" n_suffix: number of lines after the cursor location to include in the local suffix
|
|
" n_predict: max number of tokens to predict
|
|
" t_max_prompt_ms: max alloted time for the prompt processing (TODO: not yet supported)
|
|
" t_max_predict_ms: max alloted time for the prediction
|
|
" show_info: show extra info about the inference (0 - disabled, 1 - statusline, 2 - inline)
|
|
" auto_fim: trigger FIM completion automatically on cursor movement
|
|
" max_line_suffix: do not auto-trigger FIM completion if there are more than this number of characters to the right of the cursor
|
|
"
|
|
" ring buffer of chunks, accumulated with time upon:
|
|
"
|
|
" - completion request
|
|
" - yank
|
|
" - entering a buffer
|
|
" - leaving a buffer
|
|
" - writing a file
|
|
"
|
|
" parameters for the ring-buffer with extra context:
|
|
"
|
|
" ring_n_chunks: max number of chunks to pass as extra context to the server (0 to disable)
|
|
" ring_chunk_size: max size of the chunks (in number of lines)
|
|
" note: adjust these numbers so that you don't overrun your context
|
|
" at ring_n_chunks = 64 and ring_chunk_size = 64 you need ~32k context
|
|
" ring_scope: the range around the cursor position (in number of lines) for gathering chunks after FIM
|
|
" ring_update_ms: how often to process queued chunks in normal mode
|
|
"
|
|
let s:default_config = {
|
|
\ 'endpoint': 'http://127.0.0.1:8012/infill',
|
|
\ 'n_prefix': 256,
|
|
\ 'n_suffix': 64,
|
|
\ 'n_predict': 128,
|
|
\ 't_max_prompt_ms': 500,
|
|
\ 't_max_predict_ms': 3000,
|
|
\ 'show_info': 2,
|
|
\ 'auto_fim': v:true,
|
|
\ 'max_line_suffix': 8,
|
|
\ 'ring_n_chunks': 64,
|
|
\ 'ring_chunk_size': 64,
|
|
\ 'ring_scope': 1024,
|
|
\ 'ring_update_ms': 1000,
|
|
\ }
|
|
|
|
let g:llama_config = get(g:, 'llama_config', s:default_config)
|
|
|
|
function! s:get_indent(str)
|
|
let l:count = 0
|
|
for i in range(len(a:str))
|
|
if a:str[i] == "\t"
|
|
let l:count += &tabstop - 1
|
|
else
|
|
break
|
|
endif
|
|
endfor
|
|
return l:count
|
|
endfunction
|
|
|
|
function! s:rand(i0, i1) abort
|
|
return a:i0 + rand() % (a:i1 - a:i0 + 1)
|
|
endfunction
|
|
|
|
function! llama#init()
|
|
if !executable('curl')
|
|
echohl WarningMsg
|
|
echo 'llama.vim requires the "curl" command to be available'
|
|
echohl None
|
|
return
|
|
endif
|
|
|
|
let s:pos_x = 0 " cursor position upon start of completion
|
|
let s:pos_y = 0
|
|
|
|
let s:line_cur = ''
|
|
|
|
let s:line_cur_prefix = ''
|
|
let s:line_cur_suffix = ''
|
|
|
|
let s:ring_chunks = [] " current set of chunks used as extra context
|
|
let s:ring_queued = [] " chunks that are queued to be sent for processing
|
|
let s:ring_n_evict = 0
|
|
|
|
let s:hint_shown = v:false
|
|
let s:pos_y_pick = -9999 " last y where we picked a chunk
|
|
let s:pos_dx = 0
|
|
let s:content = []
|
|
let s:can_accept = v:false
|
|
|
|
let s:timer_fim = -1
|
|
let s:t_fim_start = reltime() " used to measure total FIM time
|
|
let s:t_last_move = reltime() " last time the cursor moved
|
|
|
|
let s:current_job = v:null
|
|
|
|
let s:ghost_text_nvim = exists('*nvim_buf_get_mark')
|
|
let s:ghost_text_vim = has('textprop')
|
|
|
|
if s:ghost_text_vim
|
|
let s:hlgroup_hint = 'llama_hl_hint'
|
|
let s:hlgroup_info = 'llama_hl_info'
|
|
|
|
if empty(prop_type_get(s:hlgroup_hint))
|
|
call prop_type_add(s:hlgroup_hint, {'highlight': s:hlgroup_hint})
|
|
endif
|
|
if empty(prop_type_get(s:hlgroup_info))
|
|
call prop_type_add(s:hlgroup_info, {'highlight': s:hlgroup_info})
|
|
endif
|
|
endif
|
|
|
|
augroup llama
|
|
autocmd!
|
|
autocmd InsertEnter * inoremap <expr> <silent> <C-F> llama#fim_inline(v:false)
|
|
autocmd InsertLeavePre * call llama#fim_cancel()
|
|
|
|
autocmd CursorMoved * call s:on_move()
|
|
autocmd CursorMovedI * call s:on_move()
|
|
autocmd CompleteChanged * call llama#fim_cancel()
|
|
|
|
if g:llama_config.auto_fim
|
|
autocmd CursorMovedI * call llama#fim(v:true)
|
|
endif
|
|
|
|
" gather chunks upon yanking
|
|
autocmd TextYankPost * if v:event.operator ==# 'y' | call s:pick_chunk(v:event.regcontents, v:false, v:true) | endif
|
|
|
|
" gather chunks upon entering/leaving a buffer
|
|
autocmd BufEnter * call timer_start(100, {-> s:pick_chunk(getline(max([1, line('.') - g:llama_config.ring_chunk_size/2]), min([line('.') + g:llama_config.ring_chunk_size/2, line('$')])), v:true, v:true)})
|
|
autocmd BufLeave * call s:pick_chunk(getline(max([1, line('.') - g:llama_config.ring_chunk_size/2]), min([line('.') + g:llama_config.ring_chunk_size/2, line('$')])), v:true, v:true)
|
|
|
|
" gather chunk upon saving the file
|
|
autocmd BufWritePost * call s:pick_chunk(getline(max([1, line('.') - g:llama_config.ring_chunk_size/2]), min([line('.') + g:llama_config.ring_chunk_size/2, line('$')])), v:true, v:true)
|
|
augroup END
|
|
|
|
silent! call llama#fim_cancel()
|
|
|
|
" init background update of the ring buffer
|
|
if g:llama_config.ring_n_chunks > 0
|
|
call s:ring_update()
|
|
endif
|
|
endfunction
|
|
|
|
" compute how similar two chunks of text are
|
|
" 0 - no similarity, 1 - high similarity
|
|
" TODO: figure out something better
|
|
function! s:chunk_sim(c0, c1)
|
|
let l:lines0 = len(a:c0)
|
|
let l:lines1 = len(a:c1)
|
|
|
|
let l:common = 0
|
|
|
|
for l:line0 in a:c0
|
|
for l:line1 in a:c1
|
|
if l:line0 == l:line1
|
|
let l:common += 1
|
|
break
|
|
endif
|
|
endfor
|
|
endfor
|
|
|
|
return 2.0 * l:common / (l:lines0 + l:lines1)
|
|
endfunction
|
|
|
|
" pick a random chunk of size g:llama_config.ring_chunk_size from the provided text and queue it for processing
|
|
"
|
|
" no_mod - do not pick chunks from buffers with pending changes
|
|
" do_evict - evict chunks that are very similar to the new one
|
|
"
|
|
function! s:pick_chunk(text, no_mod, do_evict)
|
|
" do not pick chunks from buffers with pending changes or buffers that are not files
|
|
if a:no_mod && (getbufvar(bufnr('%'), '&modified') || !buflisted(bufnr('%')) || !filereadable(expand('%')))
|
|
return
|
|
endif
|
|
|
|
" if the extra context option is disabled - do nothing
|
|
if g:llama_config.ring_n_chunks <= 0
|
|
return
|
|
endif
|
|
|
|
" don't pick very small chunks
|
|
if len(a:text) < 3
|
|
return
|
|
endif
|
|
|
|
if len(a:text) + 1 < g:llama_config.ring_chunk_size
|
|
let l:chunk = a:text
|
|
else
|
|
let l:l0 = s:rand(0, max([0, len(a:text) - g:llama_config.ring_chunk_size/2]))
|
|
let l:l1 = min([l:l0 + g:llama_config.ring_chunk_size/2, len(a:text)])
|
|
|
|
let l:chunk = a:text[l:l0:l:l1]
|
|
endif
|
|
|
|
let l:chunk_str = join(l:chunk, "\n") . "\n"
|
|
|
|
" check if this chunk is already added
|
|
let l:exist = v:false
|
|
|
|
for i in range(len(s:ring_chunks))
|
|
if s:ring_chunks[i].data == l:chunk
|
|
let l:exist = v:true
|
|
break
|
|
endif
|
|
endfor
|
|
|
|
for i in range(len(s:ring_queued))
|
|
if s:ring_queued[i].data == l:chunk
|
|
let l:exist = v:true
|
|
break
|
|
endif
|
|
endfor
|
|
|
|
if l:exist
|
|
return
|
|
endif
|
|
|
|
" evict queued chunks that are very similar to the new one
|
|
for i in range(len(s:ring_queued) - 1, 0, -1)
|
|
if s:chunk_sim(s:ring_queued[i].data, l:chunk) > 0.9
|
|
if a:do_evict
|
|
call remove(s:ring_queued, i)
|
|
let s:ring_n_evict += 1
|
|
else
|
|
return
|
|
endif
|
|
endif
|
|
endfor
|
|
|
|
" also from s:ring_chunks
|
|
for i in range(len(s:ring_chunks) - 1, 0, -1)
|
|
if s:chunk_sim(s:ring_chunks[i].data, l:chunk) > 0.9
|
|
if a:do_evict
|
|
call remove(s:ring_chunks, i)
|
|
let s:ring_n_evict += 1
|
|
else
|
|
return
|
|
endif
|
|
endif
|
|
endfor
|
|
|
|
" TODO: become parameter ?
|
|
if len(s:ring_queued) == 16
|
|
call remove(s:ring_queued, 0)
|
|
endif
|
|
|
|
call add(s:ring_queued, {'data': l:chunk, 'str': l:chunk_str, 'time': reltime(), 'filename': expand('%')})
|
|
|
|
"let &statusline = 'extra context: ' . len(s:ring_chunks) . ' / ' . len(s:ring_queued)
|
|
endfunction
|
|
|
|
" picks a queued chunk, sends it for processing and adds it to s:ring_chunks
|
|
" called every g:llama_config.ring_update_ms
|
|
function! s:ring_update()
|
|
call timer_start(g:llama_config.ring_update_ms, {-> s:ring_update()})
|
|
|
|
" update only if in normal mode or if the cursor hasn't moved for a while
|
|
if mode() !=# 'n' && reltimefloat(reltime(s:t_last_move)) < 3.0
|
|
return
|
|
endif
|
|
|
|
if len(s:ring_queued) == 0
|
|
return
|
|
endif
|
|
|
|
" move the first queued chunk to the ring buffer
|
|
if len(s:ring_chunks) == g:llama_config.ring_n_chunks
|
|
call remove(s:ring_chunks, 0)
|
|
endif
|
|
|
|
call add(s:ring_chunks, remove(s:ring_queued, 0))
|
|
|
|
"let &statusline = 'updated context: ' . len(s:ring_chunks) . ' / ' . len(s:ring_queued)
|
|
|
|
" send asynchronous job with the new extra context so that it is ready for the next FIM
|
|
let l:extra_context = []
|
|
for l:chunk in s:ring_chunks
|
|
call add(l:extra_context, {
|
|
\ 'text': l:chunk.str,
|
|
\ 'time': l:chunk.time,
|
|
\ 'filename': l:chunk.filename
|
|
\ })
|
|
endfor
|
|
|
|
" no samplers needed here
|
|
let l:request = json_encode({
|
|
\ 'input_prefix': "",
|
|
\ 'input_suffix': "",
|
|
\ 'input_extra': l:extra_context,
|
|
\ 'prompt': "",
|
|
\ 'n_predict': 1,
|
|
\ 'temperature': 0.0,
|
|
\ 'stream': v:false,
|
|
\ 'samplers': ["temperature"],
|
|
\ 'cache_prompt': v:true,
|
|
\ 't_max_prompt_ms': 1,
|
|
\ 't_max_predict_ms': 1
|
|
\ })
|
|
|
|
let l:curl_command = [
|
|
\ "curl",
|
|
\ "--silent",
|
|
\ "--no-buffer",
|
|
\ "--request", "POST",
|
|
\ "--url", g:llama_config.endpoint,
|
|
\ "--header", "Content-Type: application/json",
|
|
\ "--data", l:request
|
|
\ ]
|
|
|
|
" no callbacks because we don't need to process the response
|
|
if s:ghost_text_nvim
|
|
call jobstart(l:curl_command, {})
|
|
elseif s:ghost_text_vim
|
|
call job_start(l:curl_command, {})
|
|
endif
|
|
endfunction
|
|
|
|
" necessary for 'inoremap <expr>'
|
|
function! llama#fim_inline(is_auto) abort
|
|
call llama#fim(a:is_auto)
|
|
return ''
|
|
endfunction
|
|
|
|
" the main FIM call
|
|
" takes local context around the cursor and sends it together with the extra context to the server for completion
|
|
function! llama#fim(is_auto) abort
|
|
" we already have a suggestion for the current cursor position
|
|
if s:hint_shown && !a:is_auto
|
|
call llama#fim_cancel()
|
|
return
|
|
endif
|
|
|
|
call llama#fim_cancel()
|
|
|
|
" avoid sending repeated requests too fast
|
|
if reltimefloat(reltime(s:t_fim_start)) < 0.6
|
|
if s:timer_fim != -1
|
|
call timer_stop(s:timer_fim)
|
|
let s:timer_fim = -1
|
|
endif
|
|
|
|
let s:t_fim_start = reltime()
|
|
let s:timer_fim = timer_start(600, {-> llama#fim(v:true)})
|
|
return
|
|
endif
|
|
|
|
let s:t_fim_start = reltime()
|
|
|
|
let s:content = []
|
|
let s:can_accept = v:false
|
|
|
|
let s:pos_x = col('.') - 1
|
|
let s:pos_y = line('.')
|
|
let l:max_y = line('$')
|
|
|
|
let l:lines_prefix = getline(max([1, s:pos_y - g:llama_config.n_prefix]), s:pos_y - 1)
|
|
let l:lines_suffix = getline(s:pos_y + 1, min([l:max_y, s:pos_y + g:llama_config.n_suffix]))
|
|
|
|
let s:line_cur = getline('.')
|
|
|
|
let s:line_cur_prefix = strpart(s:line_cur, 0, s:pos_x)
|
|
let s:line_cur_suffix = strpart(s:line_cur, s:pos_x)
|
|
|
|
if a:is_auto && len(s:line_cur_suffix) > g:llama_config.max_line_suffix
|
|
return
|
|
endif
|
|
|
|
let l:prefix = ""
|
|
\ . join(l:lines_prefix, "\n")
|
|
\ . "\n"
|
|
|
|
let l:prompt = ""
|
|
\ . s:line_cur_prefix
|
|
|
|
let l:suffix = ""
|
|
\ . s:line_cur_suffix
|
|
\ . "\n"
|
|
\ . join(l:lines_suffix, "\n")
|
|
\ . "\n"
|
|
|
|
" prepare the extra context data
|
|
let l:extra_context = []
|
|
for l:chunk in s:ring_chunks
|
|
call add(l:extra_context, {
|
|
\ 'text': l:chunk.str,
|
|
\ 'time': l:chunk.time,
|
|
\ 'filename': l:chunk.filename
|
|
\ })
|
|
endfor
|
|
|
|
" the indentation of the current line
|
|
let l:indent = strlen(matchstr(s:line_cur_prefix, '^\s*'))
|
|
|
|
let l:request = json_encode({
|
|
\ 'input_prefix': l:prefix,
|
|
\ 'input_suffix': l:suffix,
|
|
\ 'input_extra': l:extra_context,
|
|
\ 'prompt': l:prompt,
|
|
\ 'n_predict': g:llama_config.n_predict,
|
|
\ 'n_indent': l:indent,
|
|
\ 'top_k': 40,
|
|
\ 'top_p': 0.99,
|
|
\ 'stream': v:false,
|
|
\ 'samplers': ["top_k", "top_p", "infill"],
|
|
\ 'cache_prompt': v:true,
|
|
\ 't_max_prompt_ms': g:llama_config.t_max_prompt_ms,
|
|
\ 't_max_predict_ms': g:llama_config.t_max_predict_ms
|
|
\ })
|
|
|
|
let l:curl_command = [
|
|
\ "curl",
|
|
\ "--silent",
|
|
\ "--no-buffer",
|
|
\ "--request", "POST",
|
|
\ "--url", g:llama_config.endpoint,
|
|
\ "--header", "Content-Type: application/json",
|
|
\ "--data", l:request
|
|
\ ]
|
|
|
|
if s:current_job != v:null
|
|
if s:ghost_text_nvim
|
|
call jobstop(s:current_job)
|
|
elseif s:ghost_text_vim
|
|
call job_stop(s:current_job)
|
|
endif
|
|
endif
|
|
|
|
" send the request asynchronously
|
|
if s:ghost_text_nvim
|
|
let s:current_job = jobstart(l:curl_command, {
|
|
\ 'on_stdout': function('s:fim_on_stdout', [s:pos_x, s:pos_y, a:is_auto]),
|
|
\ 'on_exit': function('s:fim_on_exit'),
|
|
\ 'stdout_buffered': v:true
|
|
\ })
|
|
elseif s:ghost_text_vim
|
|
let s:current_job = job_start(l:curl_command, {
|
|
\ 'out_cb': function('s:fim_on_stdout', [s:pos_x, s:pos_y, a:is_auto]),
|
|
\ 'exit_cb': function('s:fim_on_exit')
|
|
\ })
|
|
endif
|
|
|
|
" TODO: per-file location
|
|
let l:delta_y = abs(s:pos_y - s:pos_y_pick)
|
|
|
|
" gather some extra context nearby and process it in the background
|
|
" only gather chunks if the cursor has moved a lot
|
|
" TODO: something more clever? reranking?
|
|
if a:is_auto && l:delta_y > 32
|
|
" expand the prefix even further
|
|
call s:pick_chunk(getline(max([1, s:pos_y - g:llama_config.ring_scope]), max([1, s:pos_y - g:llama_config.n_prefix])), v:false, v:false)
|
|
|
|
" pick a suffix chunk
|
|
call s:pick_chunk(getline(min([l:max_y, s:pos_y + g:llama_config.n_suffix]), min([l:max_y, s:pos_y + g:llama_config.n_suffix + g:llama_config.ring_chunk_size])), v:false, v:false)
|
|
|
|
let s:pos_y_pick = s:pos_y
|
|
endif
|
|
endfunction
|
|
|
|
" if first_line == v:true accept only the first line of the response
|
|
function! llama#fim_accept(first_line)
|
|
" insert the suggestion at the cursor location
|
|
if s:can_accept && len(s:content) > 0
|
|
call setline(s:pos_y, s:line_cur[:(s:pos_x - 1)] . s:content[0])
|
|
if len(s:content) > 1
|
|
if !a:first_line
|
|
call append(s:pos_y, s:content[1:-1])
|
|
endif
|
|
endif
|
|
|
|
" move the cursor to the end of the accepted text
|
|
if !a:first_line && len(s:content) > 1
|
|
call cursor(s:pos_y + len(s:content) - 1, s:pos_x + s:pos_dx + 1)
|
|
else
|
|
call cursor(s:pos_y, s:pos_x + len(s:content[0]))
|
|
endif
|
|
endif
|
|
|
|
call llama#fim_cancel()
|
|
endfunction
|
|
|
|
function! llama#fim_cancel()
|
|
let s:hint_shown = v:false
|
|
|
|
" clear the virtual text
|
|
let l:bufnr = bufnr('%')
|
|
|
|
if s:ghost_text_nvim
|
|
let l:id_vt_fim = nvim_create_namespace('vt_fim')
|
|
call nvim_buf_clear_namespace(l:bufnr, l:id_vt_fim, 0, -1)
|
|
elseif s:ghost_text_vim
|
|
call prop_remove({'type': s:hlgroup_hint, 'all': v:true})
|
|
call prop_remove({'type': s:hlgroup_info, 'all': v:true})
|
|
endif
|
|
|
|
" remove the mappings
|
|
silent! iunmap <buffer> <Tab>
|
|
silent! iunmap <buffer> <S-Tab>
|
|
silent! iunmap <buffer> <Esc>
|
|
endfunction
|
|
|
|
function! s:on_move()
|
|
let s:t_last_move = reltime()
|
|
|
|
call llama#fim_cancel()
|
|
endfunction
|
|
|
|
" callback that processes the FIM result from the server and displays the suggestion
|
|
function! s:fim_on_stdout(pos_x, pos_y, is_auto, job_id, data, event = v:null)
|
|
if s:ghost_text_nvim
|
|
let l:raw = join(a:data, "\n")
|
|
elseif s:ghost_text_vim
|
|
let l:raw = a:data
|
|
endif
|
|
|
|
if len(l:raw) == 0
|
|
return
|
|
endif
|
|
|
|
if a:pos_x != col('.') - 1 || a:pos_y != line('.')
|
|
return
|
|
endif
|
|
|
|
" show the suggestion only in insert mode
|
|
if mode() !=# 'i'
|
|
return
|
|
endif
|
|
|
|
let s:pos_x = a:pos_x
|
|
let s:pos_y = a:pos_y
|
|
|
|
let s:can_accept = v:true
|
|
let l:has_info = v:false
|
|
|
|
if s:can_accept && v:shell_error
|
|
if !a:is_auto
|
|
call add(s:content, "<| curl error: is the server on? |>")
|
|
endif
|
|
let s:can_accept = v:false
|
|
endif
|
|
|
|
let l:n_prompt = 0
|
|
let l:t_prompt_ms = 1.0
|
|
let l:s_prompt = 0
|
|
|
|
let l:n_predict = 0
|
|
let l:t_predict_ms = 1.0
|
|
let l:s_predict = 0
|
|
|
|
" get the generated suggestion
|
|
if s:can_accept
|
|
let l:response = json_decode(l:raw)
|
|
|
|
for l:part in split(get(l:response, 'content', ''), "\n", 1)
|
|
call add(s:content, l:part)
|
|
endfor
|
|
|
|
" remove trailing new lines
|
|
while len(s:content) > 0 && s:content[-1] == ""
|
|
call remove(s:content, -1)
|
|
endwhile
|
|
|
|
let l:generation_settings = get(l:response, 'generation_settings', {})
|
|
let l:n_ctx = get(l:generation_settings, 'n_ctx', 0)
|
|
|
|
let l:n_cached = get(l:response, 'tokens_cached', 0)
|
|
let l:truncated = get(l:response, 'truncated', v:false)
|
|
|
|
" if response.timings is available
|
|
if len(get(l:response, 'timings', {})) > 0
|
|
let l:has_info = v:true
|
|
let l:timings = get(l:response, 'timings', {})
|
|
|
|
let l:n_prompt = get(l:timings, 'prompt_n', 0)
|
|
let l:t_prompt_ms = get(l:timings, 'prompt_ms', 1)
|
|
let l:s_prompt = get(l:timings, 'prompt_per_second', 0)
|
|
|
|
let l:n_predict = get(l:timings, 'predicted_n', 0)
|
|
let l:t_predict_ms = get(l:timings, 'predicted_ms', 1)
|
|
let l:s_predict = get(l:timings, 'predicted_per_second', 0)
|
|
endif
|
|
endif
|
|
|
|
if len(s:content) == 0
|
|
call add(s:content, "")
|
|
let s:can_accept = v:false
|
|
endif
|
|
|
|
if len(s:content) == 0
|
|
return
|
|
endif
|
|
|
|
" NOTE: the following is logic for discarding predictions that repeat existing text
|
|
" the code is quite ugly and there is very likely a simpler and more canonical way to implement this
|
|
"
|
|
" still, I wonder if there is some better way that avoids having to do these special hacks?
|
|
" on one hand, the LLM 'sees' the contents of the file before we start editing, so it is normal that it would
|
|
" start generating whatever we have given it via the extra context. but on the other hand, it's not very
|
|
" helpful to re-generate the same code that is already there
|
|
|
|
" truncate the suggestion if the first line is empty
|
|
if len(s:content) == 1 && s:content[0] == ""
|
|
let s:content = [""]
|
|
endif
|
|
|
|
" ... and the next lines are repeated
|
|
if len(s:content) > 1 && s:content[0] == "" && s:content[1:] == getline(s:pos_y + 1, s:pos_y + len(s:content) - 1)
|
|
let s:content = [""]
|
|
endif
|
|
|
|
" truncate the suggestion if it repeats the suffix
|
|
if len(s:content) == 1 && s:content[0] == s:line_cur_suffix
|
|
let s:content = [""]
|
|
endif
|
|
|
|
" find the first non-empty line (strip whitespace)
|
|
let l:cmp_y = s:pos_y + 1
|
|
while l:cmp_y < line('$') && getline(l:cmp_y) =~? '^\s*$'
|
|
let l:cmp_y += 1
|
|
endwhile
|
|
|
|
if (s:line_cur_prefix . s:content[0]) == getline(l:cmp_y)
|
|
" truncate the suggestion if it repeats the next line
|
|
if len(s:content) == 1
|
|
let s:content = [""]
|
|
endif
|
|
|
|
" ... or if the second line of the suggestion is the prefix of line l:cmp_y + 1
|
|
if len(s:content) == 2 && s:content[-1] == getline(l:cmp_y + 1)[:len(s:content[-1]) - 1]
|
|
let s:content = [""]
|
|
endif
|
|
|
|
" ... or if the middle chunk of lines of the suggestion is the same as [l:cmp_y + 1, l:cmp_y + len(s:content) - 1)
|
|
if len(s:content) > 2 && join(s:content[1:-1], "\n") == join(getline(l:cmp_y + 1, l:cmp_y + len(s:content) - 1), "\n")
|
|
let s:content = [""]
|
|
endif
|
|
endif
|
|
|
|
" keep only lines that have the same or larger whitespace prefix as s:line_cur_prefix
|
|
"let l:indent = strlen(matchstr(s:line_cur_prefix, '^\s*'))
|
|
"for i in range(1, len(s:content) - 1)
|
|
" if strlen(matchstr(s:content[i], '^\s*')) < l:indent
|
|
" let s:content = s:content[:i - 1]
|
|
" break
|
|
" endif
|
|
"endfor
|
|
|
|
let s:pos_dx = len(s:content[-1])
|
|
|
|
let s:content[-1] .= s:line_cur_suffix
|
|
|
|
call llama#fim_cancel()
|
|
|
|
" display virtual text with the suggestion
|
|
let l:bufnr = bufnr('%')
|
|
|
|
if s:ghost_text_nvim
|
|
let l:id_vt_fim = nvim_create_namespace('vt_fim')
|
|
endif
|
|
|
|
" construct the info message
|
|
if g:llama_config.show_info > 0 && l:has_info
|
|
let l:prefix = ' '
|
|
|
|
if l:truncated
|
|
let l:info = printf("%s | WARNING: the context is full: %d / %d, increase the server context size or reduce g:llama_config.ring_n_chunks",
|
|
\ g:llama_config.show_info == 2 ? l:prefix : 'llama.vim',
|
|
\ l:n_cached, l:n_ctx
|
|
\ )
|
|
else
|
|
let l:info = printf("%s | c: %d / %d, r: %d / %d, e: %d, q: %d / 16 | p: %d (%.2f ms, %.2f t/s) | g: %d (%.2f ms, %.2f t/s) | t: %.2f ms",
|
|
\ g:llama_config.show_info == 2 ? l:prefix : 'llama.vim',
|
|
\ l:n_cached, l:n_ctx, len(s:ring_chunks), g:llama_config.ring_n_chunks, s:ring_n_evict, len(s:ring_queued),
|
|
\ l:n_prompt, l:t_prompt_ms, l:s_prompt,
|
|
\ l:n_predict, l:t_predict_ms, l:s_predict,
|
|
\ 1000.0 * reltimefloat(reltime(s:t_fim_start))
|
|
\ )
|
|
endif
|
|
|
|
if g:llama_config.show_info == 1
|
|
" display the info in the statusline
|
|
let &statusline = l:info
|
|
let l:info = ''
|
|
endif
|
|
endif
|
|
|
|
" display the suggestion and append the info to the end of the first line
|
|
if s:ghost_text_nvim
|
|
call nvim_buf_set_extmark(l:bufnr, l:id_vt_fim, s:pos_y - 1, s:pos_x - 1, {
|
|
\ 'virt_text': [[s:content[0], 'llama_hl_hint'], [l:info, 'llama_hl_info']],
|
|
\ 'virt_text_win_col': virtcol('.') - 1
|
|
\ })
|
|
|
|
call nvim_buf_set_extmark(l:bufnr, l:id_vt_fim, s:pos_y - 1, 0, {
|
|
\ 'virt_lines': map(s:content[1:], {idx, val -> [[val, 'llama_hl_hint']]}),
|
|
\ 'virt_text_win_col': virtcol('.')
|
|
\ })
|
|
elseif s:ghost_text_vim
|
|
let l:new_suffix = s:content[0]
|
|
if !empty(l:new_suffix)
|
|
call prop_add(s:pos_y, s:pos_x + 1, {
|
|
\ 'type': s:hlgroup_hint,
|
|
\ 'text': l:new_suffix
|
|
\ })
|
|
endif
|
|
for line in s:content[1:]
|
|
call prop_add(s:pos_y, 0, {
|
|
\ 'type': s:hlgroup_hint,
|
|
\ 'text': line,
|
|
\ 'text_padding_left': s:get_indent(line),
|
|
\ 'text_align': 'below'
|
|
\ })
|
|
endfor
|
|
if !empty(l:info)
|
|
call prop_add(s:pos_y, 0, {
|
|
\ 'type': s:hlgroup_info,
|
|
\ 'text': l:info,
|
|
\ 'text_padding_left': col('$'),
|
|
\ 'text_wrap': 'truncate'
|
|
\ })
|
|
endif
|
|
endif
|
|
|
|
" setup accept shortcuts
|
|
inoremap <buffer> <Tab> <C-O>:call llama#fim_accept(v:false)<CR>
|
|
inoremap <buffer> <S-Tab> <C-O>:call llama#fim_accept(v:true)<CR>
|
|
|
|
let s:hint_shown = v:true
|
|
endfunction
|
|
|
|
function! s:fim_on_exit(job_id, exit_code, event = v:null)
|
|
if a:exit_code != 0
|
|
echom "Job failed with exit code: " . a:exit_code
|
|
endif
|
|
|
|
let s:current_job = v:null
|
|
endfunction
|