mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-04 01:57:53 +01:00
d9d54e498d
* speculative : refactor and add a simpler example ggml-ci * speculative : clean-up and add comments and TODOs [no ci] * speculative : manage context in common_speculative ggml-ci * speculative : simplify ggml-ci * speculative : simplify (cont) ggml-ci * speculative : add --draft-min CLI arg * speculative : minor fixup * make : build fixes * speculative : do not redraft previous drafts ggml-ci * speculative : fix the draft sampling ggml-ci * speculative : fix compile warning * common : refactor args ggml-ci * common : change defaults [no ci] * common : final touches ggml-ci
324 lines
12 KiB
C++
324 lines
12 KiB
C++
#include "arg.h"
|
|
#include "log.h"
|
|
#include "common.h"
|
|
#include "sampling.h"
|
|
#include "clip.h"
|
|
#include "llava.h"
|
|
#include "llama.h"
|
|
#include "ggml.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <vector>
|
|
#include <iostream> // TODO: remove me
|
|
|
|
struct llava_context {
|
|
struct clip_ctx * ctx_clip = NULL;
|
|
struct llama_context * ctx_llama = NULL;
|
|
struct llama_model * model = NULL;
|
|
};
|
|
|
|
static void show_additional_info(int /*argc*/, char ** argv) {
|
|
LOG("\nexample usage:\n\n%s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
|
LOG("\nnote: a lower temperature value like 0.1 is recommended for better quality.\n");
|
|
}
|
|
|
|
static struct llama_model * llava_init(common_params * params) {
|
|
llama_backend_init();
|
|
llama_numa_init(params->numa);
|
|
|
|
llama_model_params model_params = common_model_params_to_llama(*params);
|
|
|
|
llama_model * model = llama_load_model_from_file(params->model.c_str(), model_params);
|
|
if (model == NULL) {
|
|
LOG_ERR("%s: unable to load model\n" , __func__);
|
|
return NULL;
|
|
}
|
|
return model;
|
|
}
|
|
|
|
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
|
|
auto prompt = params->prompt;
|
|
if (prompt.empty()) {
|
|
prompt = "describe the image in detail.";
|
|
}
|
|
|
|
llama_context_params ctx_params = common_context_params_to_llama(*params);
|
|
if (params->n_ctx < 2048) {
|
|
// warn user here, "Image processing requires at least 2048 context, setting context to 2048"
|
|
LOG_WRN("%s: Image processing requires at least 2048 context, setting context to 2048\n" , __func__);
|
|
ctx_params.n_ctx = 2048;
|
|
} else {
|
|
ctx_params.n_ctx = params->n_ctx;
|
|
}
|
|
|
|
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
|
|
|
if (ctx_llama == NULL) {
|
|
LOG_ERR("%s: failed to create the llama_context\n" , __func__);
|
|
return NULL;
|
|
}
|
|
|
|
auto * ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
|
|
|
|
ctx_llava->ctx_llama = ctx_llama;
|
|
ctx_llava->model = model;
|
|
return ctx_llava;
|
|
}
|
|
|
|
static void llava_free(struct llava_context * ctx_llava) {
|
|
if (ctx_llava->ctx_clip) {
|
|
clip_free(ctx_llava->ctx_clip);
|
|
ctx_llava->ctx_clip = NULL;
|
|
}
|
|
|
|
llama_free(ctx_llava->ctx_llama);
|
|
llama_free_model(ctx_llava->model);
|
|
llama_backend_free();
|
|
}
|
|
|
|
static struct clip_ctx * clip_init_context(common_params * params) {
|
|
const char * clip_path = params->mmproj.c_str();
|
|
|
|
auto prompt = params->prompt;
|
|
if (prompt.empty()) {
|
|
prompt = "describe the image in detail.";
|
|
}
|
|
auto * ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
|
return ctx_clip;
|
|
}
|
|
|
|
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
|
|
int N = (int) tokens.size();
|
|
for (int i = 0; i < N; i += n_batch) {
|
|
int n_eval = (int) tokens.size() - i;
|
|
if (n_eval > n_batch) {
|
|
n_eval = n_batch;
|
|
}
|
|
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval))) {
|
|
LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
|
|
return false;
|
|
}
|
|
*n_past += n_eval;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
|
|
std::vector<llama_token> tokens;
|
|
tokens.push_back(id);
|
|
return eval_tokens(ctx_llama, tokens, 1, n_past);
|
|
}
|
|
|
|
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
|
|
std::string str2 = str;
|
|
std::vector<llama_token> embd_inp = common_tokenize(ctx_llama, str2, add_bos, true);
|
|
return eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
|
}
|
|
|
|
static void process_eval_image_embed(struct llava_context * ctx_llava, const struct llava_image_embed * embeds, int n_batch, int * n_past, int idx) {
|
|
float * image_embed = (float *)malloc(clip_embd_nbytes(ctx_llava->ctx_clip));
|
|
std::memcpy(image_embed, embeds->embed + idx * clip_n_patches(ctx_llava->ctx_clip) * clip_n_mmproj_embd(ctx_llava->ctx_clip), clip_embd_nbytes(ctx_llava->ctx_clip));
|
|
|
|
auto * slice_embed = (llava_image_embed*)malloc(sizeof(llava_image_embed));
|
|
slice_embed->embed = image_embed;
|
|
slice_embed->n_image_pos = clip_n_patches(ctx_llava->ctx_clip);
|
|
llava_eval_image_embed(ctx_llava->ctx_llama, slice_embed, n_batch, n_past);
|
|
llava_image_embed_free(slice_embed);
|
|
}
|
|
|
|
static void process_image(struct llava_context * ctx_llava, struct llava_image_embed * embeds, common_params * params, int &n_past) {
|
|
std::string system_prompt;
|
|
int idx = 0;
|
|
int num_image_embeds = embeds->n_image_pos / clip_n_patches(ctx_llava->ctx_clip);
|
|
int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip);
|
|
if (has_minicpmv_projector == 2) {
|
|
system_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n";
|
|
}
|
|
else if (has_minicpmv_projector == 3) {
|
|
system_prompt = "<|im_start|>user\n";
|
|
}
|
|
LOG_INF("%s: image token past: %d\n", __func__, n_past);
|
|
eval_string(ctx_llava->ctx_llama, (system_prompt+"<image>").c_str(), params->n_batch, &n_past, false);
|
|
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
|
|
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
|
if (num_image_embeds > 1) {
|
|
size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
|
|
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
|
|
for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
|
|
for (size_t j = 0; j < num_image_embeds_col; ++j) {
|
|
eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
|
|
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
|
|
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
|
|
if (j == num_image_embeds_col - 1) {
|
|
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
|
|
}
|
|
}
|
|
}
|
|
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
|
|
}
|
|
LOG_INF("%s: image token past: %d\n", __func__, n_past);
|
|
}
|
|
|
|
static const char * sample(struct common_sampler * smpl,
|
|
struct llama_context * ctx_llama,
|
|
int * n_past) {
|
|
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
|
|
common_sampler_accept(smpl, id, true);
|
|
static std::string ret;
|
|
if (llama_token_is_eog(llama_get_model(ctx_llama), id)) {
|
|
ret = "</s>";
|
|
} else {
|
|
ret = common_token_to_piece(ctx_llama, id);
|
|
}
|
|
eval_id(ctx_llama, id, n_past);
|
|
return ret.c_str();
|
|
}
|
|
|
|
static struct llava_context * minicpmv_init(common_params * params, const std::string & fname, int &n_past){
|
|
auto * ctx_clip = clip_init_context(params);
|
|
auto * embeds = llava_image_embed_make_with_filename(ctx_clip, params->cpuparams.n_threads, fname.c_str());
|
|
if (!embeds) {
|
|
LOG_ERR("failed to load image %s. Terminating\n\n", fname.c_str());
|
|
return NULL;
|
|
}
|
|
|
|
// process the prompt
|
|
if (params->prompt.empty() && params->interactive == false) {
|
|
LOG_ERR("prompt should be given or interactive mode should be on");
|
|
return NULL;
|
|
}
|
|
|
|
auto * model = llava_init(params);
|
|
if (model == NULL) {
|
|
fprintf(stderr, "%s: error: failed to init minicpmv model\n", __func__);
|
|
return NULL;
|
|
}
|
|
const int64_t t_llava_init_start_us = ggml_time_us();
|
|
auto * ctx_llava = llava_init_context(params, model);
|
|
ctx_llava->ctx_clip = ctx_clip;
|
|
const int64_t t_llava_init_end_us = ggml_time_us();
|
|
float t_llava_init_ms = (t_llava_init_end_us - t_llava_init_start_us) / 1000.0;
|
|
LOG_INF("%s: llava init in %8.2f ms.\n", __func__, t_llava_init_ms);
|
|
|
|
const int64_t t_process_image_start_us = ggml_time_us();
|
|
process_image(ctx_llava, embeds, params, n_past);
|
|
const int64_t t_process_image_end_us = ggml_time_us();
|
|
float t_process_image_ms = (t_process_image_end_us - t_process_image_start_us) / 1000.0;
|
|
LOG_INF("%s: llama process image in %8.2f ms.\n", __func__, t_process_image_ms);
|
|
|
|
llava_image_embed_free(embeds);
|
|
return ctx_llava;
|
|
}
|
|
|
|
static struct common_sampler * llama_init(struct llava_context * ctx_llava, common_params * params, const std::string & prompt, int & n_past, bool is_first = false){
|
|
std::string user_prompt = prompt;
|
|
int has_minicpmv_projector = clip_is_minicpmv(ctx_llava->ctx_clip);
|
|
if (!is_first) {
|
|
if (has_minicpmv_projector == 2) {
|
|
user_prompt = "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" + prompt;
|
|
}
|
|
else if (has_minicpmv_projector == 3) {
|
|
user_prompt = "<|im_start|>user\n" + prompt;
|
|
}
|
|
}
|
|
|
|
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
|
|
if (has_minicpmv_projector == 2) {
|
|
eval_string(ctx_llava->ctx_llama, "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", params->n_batch, &n_past, false);
|
|
}
|
|
else if (has_minicpmv_projector == 3) {
|
|
eval_string(ctx_llava->ctx_llama, "<|im_end|><|im_start|>assistant\n", params->n_batch, &n_past, false);
|
|
}
|
|
|
|
// generate the response
|
|
|
|
LOG_INF("\n");
|
|
|
|
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sampling);
|
|
return smpl;
|
|
}
|
|
|
|
static const char * llama_loop(struct llava_context * ctx_llava,struct common_sampler * smpl, int &n_past){
|
|
|
|
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past);
|
|
return tmp;
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
ggml_time_init();
|
|
|
|
common_params params;
|
|
|
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, show_additional_info)) {
|
|
return 1;
|
|
}
|
|
|
|
common_init();
|
|
|
|
if (params.mmproj.empty() || (params.image.empty())) {
|
|
show_additional_info(argc, argv);
|
|
return 1;
|
|
}
|
|
|
|
for (auto & image : params.image) {
|
|
int n_past = 0;
|
|
auto * ctx_llava = minicpmv_init(¶ms, image, n_past);
|
|
|
|
if (!params.prompt.empty()) {
|
|
LOG("<user>%s\n", params.prompt.c_str());
|
|
LOG("<assistant>");
|
|
auto * smpl = llama_init(ctx_llava, ¶ms, params.prompt, n_past, true);
|
|
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
|
|
std::string response;
|
|
bool have_tmp = false;
|
|
for (int i = 0; i < max_tgt_len; i++) {
|
|
const auto * tmp = llama_loop(ctx_llava, smpl, n_past);
|
|
response += tmp;
|
|
if (strcmp(tmp, "</s>") == 0){
|
|
if (!have_tmp) {
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
if (strstr(tmp, "###")) break; // Yi-VL behavior
|
|
have_tmp = true;
|
|
printf("%s", tmp);
|
|
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
|
|
|
|
fflush(stdout);
|
|
}
|
|
common_sampler_free(smpl);
|
|
}else {
|
|
while (true) {
|
|
LOG("<user>");
|
|
std::string prompt;
|
|
std::getline(std::cin, prompt);
|
|
LOG("<assistant>");
|
|
auto * smpl = llama_init(ctx_llava, ¶ms, prompt, n_past, true);
|
|
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
|
|
std::string response;
|
|
for (int i = 0; i < max_tgt_len; i++) {
|
|
const auto * tmp = llama_loop(ctx_llava, smpl, n_past);
|
|
response += tmp;
|
|
if (strcmp(tmp, "</s>") == 0) break;
|
|
if (strstr(tmp, "###")) break; // Yi-VL behavior
|
|
printf("%s", tmp);// mistral llava-1.6
|
|
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
|
|
fflush(stdout);
|
|
}
|
|
common_sampler_free(smpl);
|
|
}
|
|
}
|
|
printf("\n");
|
|
llama_perf_context_print(ctx_llava->ctx_llama);
|
|
|
|
ctx_llava->model = NULL;
|
|
llava_free(ctx_llava);
|
|
}
|
|
|
|
return 0;
|
|
}
|