mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-15 14:50:51 +01:00
208cd52f7d
The NeoX cur_rot part is different because I'm pretty sure my original implementation was wrong.
74 lines
2.8 KiB
Plaintext
74 lines
2.8 KiB
Plaintext
/**
|
|
* Copyright (c) 2023 Nomic, Inc. All rights reserved.
|
|
*
|
|
* This software is licensed under the terms of the Software for Open Models License (SOM),
|
|
* version 1.0, as detailed in the LICENSE_SOM.txt file. A copy of this license should accompany
|
|
* this software. Except as expressly granted in the SOM license, all rights are reserved by Nomic, Inc.
|
|
*/
|
|
|
|
#version 450
|
|
|
|
#include "rope_common.comp"
|
|
|
|
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
|
layout(binding = 1) buffer restrict readonly tensorInB { int inB[]; };
|
|
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
|
|
|
|
void main() {
|
|
const uint i3 = gl_WorkGroupID.z;
|
|
const uint i2 = gl_WorkGroupID.y;
|
|
const uint i1 = gl_WorkGroupID.x;
|
|
|
|
const bool is_neox = (pcs.mode & 2) != 0;
|
|
|
|
float corr_dims[2];
|
|
rope_yarn_corr_dims(pcs.n_dims, pcs.n_orig_ctx, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
|
|
|
|
const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims);
|
|
|
|
const int p = inB[pcs.inBOff + i2];
|
|
|
|
float theta = float(p);
|
|
|
|
if (!is_neox) {
|
|
for (uint i0 = 0; i0 < pcs.ne0; i0 += 2) {
|
|
float cos_theta, sin_theta;
|
|
rope_yarn(theta, pcs.freq_scale, corr_dims, i0, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
|
|
|
theta *= theta_scale;
|
|
|
|
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
|
|
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
|
|
|
|
const float x0 = inA[src];
|
|
const float x1 = inA[src+1];
|
|
|
|
out_[dst_data] = x0*cos_theta - x1*sin_theta;
|
|
out_[dst_data+1] = x0*sin_theta + x1*cos_theta;
|
|
}
|
|
} else {
|
|
const float inv_ndims = -1.f/pcs.n_dims;
|
|
for (uint ib = 0; ib < pcs.ne0/pcs.n_dims; ++ib) {
|
|
for (uint ic = 0; ic < pcs.n_dims; ic += 2) {
|
|
const uint cur_rot = ib * pcs.n_dims + ic;
|
|
|
|
float cos_theta, sin_theta;
|
|
rope_yarn(theta, pcs.freq_scale, corr_dims, cur_rot, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
|
|
|
theta *= theta_scale;
|
|
|
|
const uint i0 = ib*pcs.n_dims + ic/2;
|
|
|
|
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
|
|
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
|
|
|
|
const float x0 = inA[src];
|
|
const float x1 = inA[src+pcs.n_dims/2];
|
|
|
|
out_[dst_data] = x0*cos_theta - x1*sin_theta;
|
|
out_[dst_data+pcs.n_dims/2] = x0*sin_theta + x1*cos_theta;
|
|
}
|
|
}
|
|
}
|
|
}
|