mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-09 12:08:56 +01:00
69c487f4ed
* CUDA: MMQ code deduplication + iquant support * 1 less parallel job for CI build
1134 lines
38 KiB
Plaintext
1134 lines
38 KiB
Plaintext
#include "common.cuh"
|
|
#include <cstdint>
|
|
|
|
static __device__ __forceinline__ int get_int_b2(const void * x, const int & i32) {
|
|
const uint16_t * x16 = (const uint16_t *) x; // assume at least 2 byte alignment
|
|
|
|
int x32 = x16[2*i32 + 0] << 0;
|
|
x32 |= x16[2*i32 + 1] << 16;
|
|
|
|
return x32;
|
|
}
|
|
|
|
static __device__ __forceinline__ int get_int_b4(const void * x, const int & i32) {
|
|
return ((const int *) x)[i32]; // assume at least 4 byte alignment
|
|
}
|
|
|
|
// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
|
|
// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
|
|
|
|
#define VDR_Q4_0_Q8_1_MMVQ 2
|
|
#define VDR_Q4_0_Q8_1_MMQ 4
|
|
|
|
template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl(
|
|
const int * v, const int * u, const float & d4, const half2 & ds8) {
|
|
|
|
int sumi = 0;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < vdr; ++i) {
|
|
const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
|
|
const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
|
|
|
|
// SIMD dot product of quantized values
|
|
sumi = ggml_cuda_dp4a(vi0, u[2*i+0], sumi);
|
|
sumi = ggml_cuda_dp4a(vi1, u[2*i+1], sumi);
|
|
}
|
|
|
|
const float2 ds8f = __half22float2(ds8);
|
|
|
|
// second part effectively subtracts 8 from each quant value
|
|
return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y);
|
|
}
|
|
|
|
#define VDR_Q4_1_Q8_1_MMVQ 2
|
|
#define VDR_Q4_1_Q8_1_MMQ 4
|
|
|
|
template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl(
|
|
const int * v, const int * u, const half2 & dm4, const half2 & ds8) {
|
|
|
|
int sumi = 0;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < vdr; ++i) {
|
|
const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
|
|
const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
|
|
|
|
// SIMD dot product of quantized values
|
|
sumi = ggml_cuda_dp4a(vi0, u[2*i+0], sumi);
|
|
sumi = ggml_cuda_dp4a(vi1, u[2*i+1], sumi);
|
|
}
|
|
|
|
#ifdef GGML_CUDA_F16
|
|
const float2 tmp = __half22float2(__hmul2(dm4, ds8));
|
|
const float d4d8 = tmp.x;
|
|
const float m4s8 = tmp.y;
|
|
#else
|
|
const float2 dm4f = __half22float2(dm4);
|
|
const float2 ds8f = __half22float2(ds8);
|
|
const float d4d8 = dm4f.x * ds8f.x;
|
|
const float m4s8 = dm4f.y * ds8f.y;
|
|
#endif // GGML_CUDA_F16
|
|
|
|
// scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
|
|
return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
|
|
}
|
|
|
|
#define VDR_Q5_0_Q8_1_MMVQ 2
|
|
#define VDR_Q5_0_Q8_1_MMQ 4
|
|
|
|
template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl(
|
|
const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) {
|
|
|
|
int sumi = 0;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < vdr; ++i) {
|
|
int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
|
|
vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
|
|
vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
|
|
vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
|
|
vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
|
|
sumi = ggml_cuda_dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
|
|
|
|
int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
|
|
vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
|
|
vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
|
|
vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
|
|
vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
|
|
sumi = ggml_cuda_dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
|
|
}
|
|
|
|
const float2 ds8f = __half22float2(ds8);
|
|
|
|
// second part effectively subtracts 16 from each quant value
|
|
return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y);
|
|
}
|
|
|
|
#define VDR_Q5_1_Q8_1_MMVQ 2
|
|
#define VDR_Q5_1_Q8_1_MMQ 4
|
|
|
|
template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl(
|
|
const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) {
|
|
|
|
int sumi = 0;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < vdr; ++i) {
|
|
int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
|
|
vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
|
|
vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
|
|
vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
|
|
vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
|
|
sumi = ggml_cuda_dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
|
|
|
|
int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
|
|
vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
|
|
vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
|
|
vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
|
|
vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
|
|
sumi = ggml_cuda_dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
|
|
}
|
|
|
|
#ifdef GGML_CUDA_F16
|
|
const float2 tmp = __half22float2(__hmul2(dm5, ds8));
|
|
const float d5d8 = tmp.x;
|
|
const float m5s8 = tmp.y;
|
|
#else
|
|
const float2 dm5f = __half22float2(dm5);
|
|
const float2 ds8f = __half22float2(ds8);
|
|
const float d5d8 = dm5f.x * ds8f.x;
|
|
const float m5s8 = dm5f.y * ds8f.y;
|
|
#endif // GGML_CUDA_F16
|
|
|
|
// scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
|
|
return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
|
|
}
|
|
|
|
#define VDR_Q8_0_Q8_1_MMVQ 2
|
|
#define VDR_Q8_0_Q8_1_MMQ 8
|
|
|
|
template <typename T, int vdr> static __device__ __forceinline__ T vec_dot_q8_0_q8_1_impl(
|
|
const int * v, const int * u, const T & d8_0, const T & d8_1) {
|
|
|
|
int sumi = 0;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < vdr; ++i) {
|
|
// SIMD dot product of quantized values
|
|
sumi = ggml_cuda_dp4a(v[i], u[i], sumi);
|
|
}
|
|
|
|
return d8_0*d8_1 * ((T) sumi);
|
|
}
|
|
|
|
template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl(
|
|
const int * v, const int * u, const half2 & dm8, const half2 & ds8) {
|
|
|
|
int sumi = 0;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < vdr; ++i) {
|
|
// SIMD dot product of quantized values
|
|
sumi = ggml_cuda_dp4a(v[i], u[i], sumi);
|
|
}
|
|
|
|
#ifdef GGML_CUDA_F16
|
|
const float2 tmp = __half22float2(__hmul2(dm8, ds8));
|
|
const float d8d8 = tmp.x;
|
|
const float m8s8 = tmp.y;
|
|
#else
|
|
const float2 dm8f = __half22float2(dm8);
|
|
const float2 ds8f = __half22float2(ds8);
|
|
const float d8d8 = dm8f.x * ds8f.x;
|
|
const float m8s8 = dm8f.y * ds8f.y;
|
|
#endif // GGML_CUDA_F16
|
|
|
|
// scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
|
|
return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
|
|
}
|
|
|
|
template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_16_q8_1_impl(
|
|
const int * v, const int * u, const float * d8_0, const float & d8_1) {
|
|
|
|
float sumf = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < vdr; i0 += QI8_0/2) {
|
|
int sumi = 0;
|
|
|
|
#pragma unroll
|
|
for (int i = i0; i < i0 + QI8_0/2; ++i) {
|
|
// SIMD dot product of quantized values
|
|
sumi = ggml_cuda_dp4a(v[i], u[i], sumi);
|
|
}
|
|
|
|
sumf += d8_0[i0/(QI8_0/2)]*sumi;
|
|
}
|
|
|
|
return d8_1*sumf;
|
|
}
|
|
|
|
#define VDR_Q2_K_Q8_1_MMVQ 1
|
|
#define VDR_Q2_K_Q8_1_MMQ 4
|
|
|
|
// contiguous v/x values
|
|
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
|
|
const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
|
|
const half2 & dm2, const float * __restrict__ d8) {
|
|
|
|
float sumf_d = 0.0f;
|
|
float sumf_m = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR2_K; ++i) {
|
|
const int sc = scales[2*i];
|
|
|
|
const int vi = (v >> (2*i)) & 0x03030303;
|
|
|
|
sumf_d += d8[i] * (ggml_cuda_dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
|
|
|
|
// fill int with 4x m
|
|
int m = sc >> 4;
|
|
m |= m << 8;
|
|
m |= m << 16;
|
|
sumf_m += d8[i] * ggml_cuda_dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values
|
|
}
|
|
|
|
const float2 dm2f = __half22float2(dm2);
|
|
|
|
return dm2f.x*sumf_d - dm2f.y*sumf_m;
|
|
}
|
|
|
|
// contiguous v/x + u/y values
|
|
template <int ns8>
|
|
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
|
|
const int * __restrict__ v, const int * __restrict__ u, const half2 * dm2, const float & d8, const half2 * s8) {
|
|
|
|
float sumf = 0.0f;
|
|
float sumf_d8 = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < QR2_K*VDR_Q2_K_Q8_1_MMQ; i0 += QI8_1) {
|
|
const float2 dm2f0 = __half22float2(dm2[i0/(QI8_1/2) + 0]);
|
|
int sumi_d0 = 0;
|
|
|
|
const float2 dm2f1 = __half22float2(dm2[i0/(QI8_1/2) + 1]);
|
|
int sumi_d1 = 0;
|
|
|
|
#pragma unroll
|
|
for (int i = i0; i < i0 + QI8_1/2; ++i) {
|
|
sumi_d0 = ggml_cuda_dp4a(v[i], u[i], sumi_d0);
|
|
}
|
|
sumf_d8 += dm2f0.x * sumi_d0;
|
|
|
|
#pragma unroll
|
|
for (int i = i0 + QI8_1/2; i < i0 + QI8_1; ++i) {
|
|
sumi_d1 = ggml_cuda_dp4a(v[i], u[i], sumi_d1);
|
|
}
|
|
sumf_d8 += dm2f1.x * sumi_d1;
|
|
|
|
if (i0/QI8_1 < ns8) {
|
|
const float2 s8f = __half22float2(s8[i0/QI8_1]);
|
|
sumf -= dm2f0.y*s8f.x;
|
|
sumf -= dm2f1.y*s8f.y;
|
|
} else {
|
|
int sumi_m0 = 0;
|
|
#pragma unroll
|
|
for (int i = i0; i < i0 + QI8_1/2; ++i) {
|
|
sumi_m0 = ggml_cuda_dp4a(0x01010101, u[i], sumi_m0);
|
|
}
|
|
sumf_d8 -= dm2f0.y * sumi_m0;
|
|
|
|
int sumi_m1 = 0;
|
|
#pragma unroll
|
|
for (int i = i0 + QI8_1/2; i < i0 + QI8_1; ++i) {
|
|
sumi_m1 = ggml_cuda_dp4a(0x01010101, u[i], sumi_m1);
|
|
}
|
|
sumf_d8 -= dm2f1.y * sumi_m1;
|
|
}
|
|
}
|
|
|
|
return sumf + d8*sumf_d8;
|
|
}
|
|
|
|
#define VDR_Q3_K_Q8_1_MMVQ 1
|
|
#define VDR_Q3_K_Q8_1_MMQ 2
|
|
|
|
// contiguous v/x values
|
|
static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
|
|
const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales,
|
|
const int & scale_offset, const float & d3, const float * __restrict__ d8) {
|
|
|
|
float sumf = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR3_K; ++i) {
|
|
const int isc = scale_offset + 2*i;
|
|
|
|
const int isc_low = isc % (QK_K/32);
|
|
const int sc_shift_low = 4 * (isc / (QK_K/32));
|
|
const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF;
|
|
|
|
const int isc_high = isc % (QK_K/64);
|
|
const int sc_shift_high = 2 * (isc / (QK_K/64));
|
|
const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
|
|
|
|
const int sc = (sc_low | sc_high) - 32;
|
|
|
|
const int vil = (vl >> (2*i)) & 0x03030303;
|
|
|
|
const int vih = ((vh >> i) << 2) & 0x04040404;
|
|
|
|
const int vi = __vsubss4(vil, vih);
|
|
|
|
sumf += d8[i] * (ggml_cuda_dp4a(vi, u[i], 0) * sc); // SIMD dot product
|
|
}
|
|
|
|
return d3 * sumf;
|
|
}
|
|
|
|
// contiguous v/x + u/y values
|
|
static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
|
|
const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales,
|
|
const float & d3, const float & d8) {
|
|
|
|
int sumi = 0;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
|
|
int sumi_sc = 0;
|
|
|
|
#pragma unroll
|
|
for (int i = i0; i < i0 + QI8_1/2; ++i) {
|
|
sumi_sc = ggml_cuda_dp4a(v[i], u[i], sumi_sc); // SIMD dot product
|
|
}
|
|
|
|
sumi += sumi_sc * scales[i0 / (QI8_1/2)];
|
|
}
|
|
|
|
return d3*d8 * sumi;
|
|
}
|
|
|
|
#define VDR_Q4_K_Q8_1_MMVQ 2
|
|
#define VDR_Q4_K_Q8_1_MMQ 8
|
|
|
|
// contiguous v/x values
|
|
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
|
|
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
|
|
const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) {
|
|
|
|
float sumf_d = 0.0f;
|
|
float sumf_m = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR4_K; ++i) {
|
|
const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
|
|
const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
|
|
|
|
const int dot1 = ggml_cuda_dp4a(v1i, u[2*i+1], ggml_cuda_dp4a(v0i, u[2*i+0], 0)); // SIMD dot product
|
|
const int dot2 = ggml_cuda_dp4a(0x01010101, u[2*i+1], ggml_cuda_dp4a(0x01010101, u[2*i+0], 0)); // sum of u
|
|
|
|
sumf_d += d8[i] * (dot1 * sc[i]);
|
|
sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
|
|
}
|
|
|
|
const float2 dm4f = __half22float2(dm4);
|
|
|
|
return dm4f.x*sumf_d - dm4f.y*sumf_m;
|
|
}
|
|
|
|
// contiguous v/x + u/y values
|
|
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
|
|
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
|
|
const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
|
|
|
|
float sumf_d = 0.0f;
|
|
float sumf_m = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
|
|
int sumi_d = 0;
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < QI8_1; ++j) {
|
|
sumi_d = ggml_cuda_dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product
|
|
}
|
|
|
|
const float2 ds8f = __half22float2(ds8[i]);
|
|
|
|
sumf_d += ds8f.x * (sc[i] * sumi_d);
|
|
sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
|
|
}
|
|
|
|
const float2 dm4f = __half22float2(dm4);
|
|
|
|
return dm4f.x*sumf_d - dm4f.y*sumf_m;
|
|
}
|
|
|
|
#define VDR_Q5_K_Q8_1_MMVQ 2
|
|
#define VDR_Q5_K_Q8_1_MMQ 8
|
|
|
|
// contiguous v/x values
|
|
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
|
|
const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
|
|
const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
|
|
|
|
float sumf_d = 0.0f;
|
|
float sumf_m = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR5_K; ++i) {
|
|
const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
|
|
const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
|
|
|
|
const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
|
|
const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
|
|
|
|
const int v0i = vl0i | vh0i;
|
|
const int v1i = vl1i | vh1i;
|
|
|
|
const int dot1 = ggml_cuda_dp4a(v0i, u[2*i+0], ggml_cuda_dp4a(v1i, u[2*i+1], 0)); // SIMD dot product
|
|
const int dot2 = ggml_cuda_dp4a(0x01010101, u[2*i+0], ggml_cuda_dp4a(0x01010101, u[2*i+1], 0)); // sum of u
|
|
|
|
sumf_d += d8[i] * (dot1 * sc[i]);
|
|
sumf_m += d8[i] * (dot2 * m[i]);
|
|
|
|
}
|
|
|
|
const float2 dm5f = __half22float2(dm5);
|
|
|
|
return dm5f.x*sumf_d - dm5f.y*sumf_m;
|
|
}
|
|
|
|
// contiguous v/x + u/y values
|
|
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
|
|
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
|
|
const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
|
|
|
|
float sumf_d = 0.0f;
|
|
float sumf_m = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
|
|
int sumi_d = 0;
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < QI8_1; ++j) {
|
|
sumi_d = ggml_cuda_dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product
|
|
}
|
|
|
|
const float2 ds8f = __half22float2(ds8[i]);
|
|
|
|
sumf_d += ds8f.x * (sc[i] * sumi_d);
|
|
sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
|
|
}
|
|
|
|
const float2 dm4f = __half22float2(dm4);
|
|
|
|
return dm4f.x*sumf_d - dm4f.y*sumf_m;
|
|
}
|
|
|
|
#define VDR_Q6_K_Q8_1_MMVQ 1
|
|
#define VDR_Q6_K_Q8_1_MMQ 8
|
|
|
|
// contiguous v/x values
|
|
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
|
|
const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales,
|
|
const float & d, const float * __restrict__ d8) {
|
|
|
|
float sumf = 0.0f;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR6_K; ++i) {
|
|
const int sc = scales[4*i];
|
|
|
|
const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
|
|
|
|
const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
|
|
|
|
const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32
|
|
|
|
sumf += d8[i] * (ggml_cuda_dp4a(vi, u[i], 0) * sc); // SIMD dot product
|
|
}
|
|
|
|
return d*sumf;
|
|
}
|
|
|
|
// contiguous v/x + u/y values
|
|
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
|
|
const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc,
|
|
const float & d6, const float * __restrict__ d8) {
|
|
|
|
float sumf_d = 0.0f;
|
|
|
|
const int sc_packed = get_int_b4(sc, 0);
|
|
const int8_t * sc_reg = (const int8_t *) &sc_packed;
|
|
|
|
#pragma unroll
|
|
for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
|
|
int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
|
|
|
|
#pragma unroll
|
|
for (int i = i0; i < i0 + 2; ++i) {
|
|
sumi_d.x = ggml_cuda_dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product
|
|
sumi_d.x = ggml_cuda_dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product
|
|
|
|
sumi_d.y = ggml_cuda_dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product
|
|
sumi_d.y = ggml_cuda_dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product
|
|
}
|
|
|
|
sumf_d += d8[i0/4] * (sc_reg[i0/2+0]*sumi_d.x + sc_reg[i0/2+1]*sumi_d.y);
|
|
}
|
|
|
|
return d6 * sumf_d;
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
|
|
|
|
const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq + kbx;
|
|
|
|
int v[VDR_Q4_0_Q8_1_MMVQ];
|
|
int u[2*VDR_Q4_0_Q8_1_MMVQ];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
|
|
v[i] = get_int_b2(bq4_0->qs, iqs + i);
|
|
u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i);
|
|
u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI4_0);
|
|
}
|
|
|
|
return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
|
|
}
|
|
|
|
|
|
static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
|
|
|
|
const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq + kbx;
|
|
|
|
int v[VDR_Q4_1_Q8_1_MMVQ];
|
|
int u[2*VDR_Q4_1_Q8_1_MMVQ];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
|
|
v[i] = get_int_b4(bq4_1->qs, iqs + i);
|
|
u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i);
|
|
u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI4_1);
|
|
}
|
|
|
|
return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
|
|
|
|
const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq + kbx;
|
|
|
|
int vl[VDR_Q5_0_Q8_1_MMVQ];
|
|
int vh[VDR_Q5_0_Q8_1_MMVQ];
|
|
int u[2*VDR_Q5_0_Q8_1_MMVQ];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
|
|
vl[i] = get_int_b2(bq5_0->qs, iqs + i);
|
|
vh[i] = get_int_b2(bq5_0->qh, 0) >> (4 * (iqs + i));
|
|
u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i);
|
|
u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI5_0);
|
|
}
|
|
|
|
return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
|
|
|
|
const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq + kbx;
|
|
|
|
int vl[VDR_Q5_1_Q8_1_MMVQ];
|
|
int vh[VDR_Q5_1_Q8_1_MMVQ];
|
|
int u[2*VDR_Q5_1_Q8_1_MMVQ];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
|
|
vl[i] = get_int_b4(bq5_1->qs, iqs + i);
|
|
vh[i] = get_int_b4(bq5_1->qh, 0) >> (4 * (iqs + i));
|
|
u[2*i+0] = get_int_b4(bq8_1->qs, iqs + i);
|
|
u[2*i+1] = get_int_b4(bq8_1->qs, iqs + i + QI5_1);
|
|
}
|
|
|
|
return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
|
|
|
|
const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq + kbx;
|
|
|
|
int v[VDR_Q8_0_Q8_1_MMVQ];
|
|
int u[VDR_Q8_0_Q8_1_MMVQ];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
|
|
v[i] = get_int_b2(bq8_0->qs, iqs + i);
|
|
u[i] = get_int_b4(bq8_1->qs, iqs + i);
|
|
}
|
|
|
|
return vec_dot_q8_0_q8_1_impl<float, VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, __low2half(bq8_1->ds));
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
|
|
|
|
const block_q2_K * bq2_K = (const block_q2_K *) vbq + kbx;
|
|
|
|
const int bq8_offset = QR2_K * (iqs / QI8_1);
|
|
const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
|
|
|
|
const uint8_t * scales = bq2_K->scales + scale_offset;
|
|
|
|
const int v = get_int_b4(bq2_K->qs, iqs);
|
|
int u[QR2_K];
|
|
float d8[QR2_K];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR2_K; ++ i) {
|
|
u[i] = get_int_b4(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
|
|
d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
|
|
}
|
|
|
|
return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
|
|
|
|
const block_q3_K * bq3_K = (const block_q3_K *) vbq + kbx;
|
|
|
|
const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
|
|
const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
|
|
|
|
const float d = bq3_K->d;
|
|
|
|
const int vl = get_int_b2(bq3_K->qs, iqs);
|
|
|
|
// invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
|
|
const int vh = ~get_int_b2(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
|
|
|
|
int u[QR3_K];
|
|
float d8[QR3_K];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR3_K; ++i) {
|
|
u[i] = get_int_b4(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
|
|
d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
|
|
}
|
|
|
|
return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
|
|
|
|
const block_q4_K * bq4_K = (const block_q4_K *) vbq + kbx;
|
|
|
|
int v[2];
|
|
int u[2*QR4_K];
|
|
float d8[QR4_K];
|
|
|
|
// iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
|
|
const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
|
|
|
|
// iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
|
|
// iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
|
|
// iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
|
|
// iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
|
|
|
|
const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
|
|
v[0] = q4[0];
|
|
v[1] = q4[4];
|
|
|
|
const uint16_t * scales = (const uint16_t *)bq4_K->scales;
|
|
uint16_t aux[2];
|
|
const int j = bq8_offset/2;
|
|
if (j < 2) {
|
|
aux[0] = scales[j+0] & 0x3f3f;
|
|
aux[1] = scales[j+2] & 0x3f3f;
|
|
} else {
|
|
aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
|
|
aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
|
|
}
|
|
const uint8_t * sc = (const uint8_t *)aux;
|
|
const uint8_t * m = sc + 2;
|
|
|
|
for (int i = 0; i < QR4_K; ++i) {
|
|
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
|
|
d8[i] = __low2float(bq8i->ds);
|
|
|
|
const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
|
|
u[2*i+0] = q8[0];
|
|
u[2*i+1] = q8[4];
|
|
}
|
|
|
|
return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
|
|
|
|
const block_q5_K * bq5_K = (const block_q5_K *) vbq + kbx;
|
|
|
|
int vl[2];
|
|
int vh[2];
|
|
int u[2*QR5_K];
|
|
float d8[QR5_K];
|
|
|
|
const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
|
|
const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
|
|
const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
|
|
|
|
vl[0] = ql[0];
|
|
vl[1] = ql[4];
|
|
|
|
vh[0] = qh[0] >> bq8_offset;
|
|
vh[1] = qh[4] >> bq8_offset;
|
|
|
|
const uint16_t * scales = (const uint16_t *)bq5_K->scales;
|
|
uint16_t aux[2];
|
|
const int j = bq8_offset/2;
|
|
if (j < 2) {
|
|
aux[0] = scales[j+0] & 0x3f3f;
|
|
aux[1] = scales[j+2] & 0x3f3f;
|
|
} else {
|
|
aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
|
|
aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
|
|
}
|
|
const uint8_t * sc = (const uint8_t *)aux;
|
|
const uint8_t * m = sc + 2;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR5_K; ++i) {
|
|
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
|
|
d8[i] = __low2float(bq8i->ds);
|
|
|
|
const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
|
|
u[2*i+0] = q8[0];
|
|
u[2*i+1] = q8[4];
|
|
}
|
|
|
|
return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
|
|
}
|
|
|
|
static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
|
|
|
|
const block_q6_K * bq6_K = (const block_q6_K *) vbq + kbx;
|
|
|
|
const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
|
|
const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
|
|
const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
|
|
|
|
const int vl = get_int_b2(bq6_K->ql, iqs);
|
|
const int vh = get_int_b2(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
|
|
|
|
const int8_t * scales = bq6_K->scales + scale_offset;
|
|
|
|
int u[QR6_K];
|
|
float d8[QR6_K];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < QR6_K; ++i) {
|
|
u[i] = get_int_b4(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
|
|
d8[i] = __low2float(bq8_1[bq8_offset + 2*i].ds);
|
|
}
|
|
|
|
return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
|
|
}
|
|
|
|
#define VDR_IQ2_XXS_Q8_1_MMVQ 2
|
|
#define VDR_IQ2_XXS_Q8_1_MMQ 2
|
|
|
|
static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
|
|
|
|
const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq + kbx;
|
|
|
|
const int q2 = get_int_b2(bq2->qs, iqs);
|
|
const uint8_t * aux8 = (const uint8_t *) &q2;
|
|
const uint32_t aux32 = get_int_b2(bq2->qs, iqs + 1);
|
|
|
|
int sumi = 0;
|
|
#pragma unroll
|
|
for (int k0 = 0; k0 < 8; k0 += 2) {
|
|
const int * grid_pos = (const int *) (iq2xxs_grid + aux8[k0/2]);
|
|
const int signs_packed = ksigns_iq2xs[(aux32 >> (7*k0/2)) & 0x7F];
|
|
|
|
const int signs0 = __vcmpne4(((signs_packed & 0x03) << 7) | ((signs_packed & 0x0C) << 21), 0x00000000);
|
|
const int grid0 = __vsub4(grid_pos[0] ^ signs0, signs0);
|
|
const int u0 = get_int_b4(bq8_1[iqs/2].qs, k0 + 0);
|
|
sumi = ggml_cuda_dp4a(grid0, u0, sumi);
|
|
|
|
const int signs1 = __vcmpne4(((signs_packed & 0x30) << 3) | ((signs_packed & 0xC0) << 17), 0x00000000);
|
|
const int grid1 = __vsub4(grid_pos[1] ^ signs1, signs1);
|
|
const int u1 = get_int_b4(bq8_1[iqs/2].qs, k0 + 1);
|
|
sumi = ggml_cuda_dp4a(grid1, u1, sumi);
|
|
}
|
|
|
|
const int ls = aux32 >> 28;
|
|
sumi = (ls*sumi + sumi/2)/4;
|
|
const float d = __half2float(bq2->d) * __low2float(bq8_1[iqs/2].ds);
|
|
return d * sumi;
|
|
}
|
|
|
|
#define VDR_IQ2_XS_Q8_1_MMVQ 2
|
|
#define VDR_IQ2_XS_Q8_1_MMQ 2
|
|
|
|
static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
|
|
|
|
const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq + kbx;
|
|
|
|
const int2 q2_packed = make_int2(get_int_b2(bq2->qs, iqs + 0), get_int_b2(bq2->qs, iqs + 1));
|
|
const uint16_t * q2 = (const uint16_t *) &q2_packed;
|
|
const int ls0 = bq2->scales[iqs/2] & 0x0F;
|
|
const int ls1 = bq2->scales[iqs/2] >> 4;
|
|
|
|
int sumi0 = 0;
|
|
int sumi1 = 0;
|
|
#pragma unroll
|
|
for (int l0 = 0; l0 < 8; l0 += 2) {
|
|
const uint32_t * grid_pos = (const uint32_t *)(iq2xs_grid + (q2[l0/2] & 0x000001FF));
|
|
const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l0/2] >> 9));
|
|
|
|
const int grid_l = __vsub4(grid_pos[0] ^ signs[0], signs[0]);
|
|
const int grid_h = __vsub4(grid_pos[1] ^ signs[1], signs[1]);
|
|
|
|
const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0);
|
|
const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1);
|
|
|
|
if (l0 < 4) {
|
|
sumi0 = ggml_cuda_dp4a(grid_l, u0, sumi0);
|
|
sumi0 = ggml_cuda_dp4a(grid_h, u1, sumi0);
|
|
} else {
|
|
sumi1 = ggml_cuda_dp4a(grid_l, u0, sumi1);
|
|
sumi1 = ggml_cuda_dp4a(grid_h, u1, sumi1);
|
|
}
|
|
}
|
|
const int sumi = (sumi0*ls0 + sumi1*ls1 + (sumi0 + sumi1)/2)/4;
|
|
const float d = __half2float(bq2->d) * __low2float(bq8_1[iqs/2].ds);
|
|
return d * sumi;
|
|
}
|
|
|
|
#define VDR_IQ2_S_Q8_1_MMVQ 2
|
|
#define VDR_IQ2_S_Q8_1_MMQ 2
|
|
|
|
static __device__ __forceinline__ float vec_dot_iq2_s_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
|
|
|
|
const block_iq2_s * bq2 = (const block_iq2_s *) vbq + kbx;
|
|
|
|
const int qs_packed = get_int_b2(bq2->qs, iqs/2);
|
|
const uint8_t * qs = (const uint8_t *) &qs_packed;
|
|
|
|
const int qh = bq2->qh[iqs/2];
|
|
|
|
const int signs_packed_32 = get_int_b2(bq2->qs, QK_K/32 + iqs/2);
|
|
const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32;
|
|
|
|
const int ls0 = bq2->scales[iqs/2] & 0x0F;
|
|
const int ls1 = bq2->scales[iqs/2] >> 4;
|
|
|
|
int sumi0 = 0;
|
|
int sumi1 = 0;
|
|
#pragma unroll
|
|
for (int l0 = 0; l0 < 8; l0 += 2) {
|
|
const int * grid_pos = (const int *)(iq2s_grid + (qs[l0/2] | ((qh << (8-l0)) & 0x300)));
|
|
|
|
const int signs0 = __vcmpne4(((signs_packed_8[l0/2] & 0x03) << 7) | ((signs_packed_8[l0/2] & 0x0C) << 21), 0x00000000);
|
|
const int signs1 = __vcmpne4(((signs_packed_8[l0/2] & 0x30) << 3) | ((signs_packed_8[l0/2] & 0xC0) << 17), 0x00000000);
|
|
|
|
const int grid_l = __vsub4(grid_pos[0] ^ signs0, signs0);
|
|
const int grid_h = __vsub4(grid_pos[1] ^ signs1, signs1);
|
|
|
|
const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0);
|
|
const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1);
|
|
|
|
if (l0 < 4) {
|
|
sumi0 = ggml_cuda_dp4a(grid_l, u0, sumi0);
|
|
sumi0 = ggml_cuda_dp4a(grid_h, u1, sumi0);
|
|
} else {
|
|
sumi1 = ggml_cuda_dp4a(grid_l, u0, sumi1);
|
|
sumi1 = ggml_cuda_dp4a(grid_h, u1, sumi1);
|
|
}
|
|
}
|
|
const int sumi = (sumi0*ls0 + sumi1*ls1 + (sumi0 + sumi1)/2)/4;
|
|
|
|
const float d = __half2float(bq2->d) * __low2float(bq8_1[iqs/2].ds);
|
|
return d * sumi;
|
|
}
|
|
|
|
#define VDR_IQ3_XXS_Q8_1_MMVQ 2
|
|
#define VDR_IQ3_XXS_Q8_1_MMQ 2
|
|
|
|
static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
|
|
|
|
const block_iq3_xxs * bq3 = (const block_iq3_xxs *) vbq + kbx;
|
|
|
|
const int2 q3_packed = make_int2(get_int_b2(bq3->qs, iqs), get_int_b2(bq3->qs, iqs+1));
|
|
const uint8_t * q3 = (const uint8_t *) &q3_packed;
|
|
const uint32_t aux32 = get_int_b2(bq3->qs, QK_K/16 + iqs/2);
|
|
|
|
int sumi = 0;
|
|
#pragma unroll
|
|
for (int l0 = 0; l0 < 8; l0 += 2) {
|
|
const int2 grid_pos = make_int2(iq3xxs_grid[q3[l0 + 0]], iq3xxs_grid[q3[l0 + 1]]);
|
|
|
|
const int * signs = (const int *)(ksigns64 + ((aux32 >> (7*l0/2)) & 0x7F));
|
|
|
|
const int grid_l = __vsub4(grid_pos.x ^ signs[0], signs[0]);
|
|
const int grid_h = __vsub4(grid_pos.y ^ signs[1], signs[1]);
|
|
|
|
const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0);
|
|
const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1);
|
|
|
|
sumi = ggml_cuda_dp4a(grid_l, u0, sumi);
|
|
sumi = ggml_cuda_dp4a(grid_h, u1, sumi);
|
|
}
|
|
|
|
const int ls = aux32 >> 28;
|
|
sumi = (ls*sumi + sumi/2)/2;
|
|
const float d = __half2float(bq3->d) * __low2float(bq8_1[iqs/2].ds);
|
|
return d * sumi;
|
|
}
|
|
|
|
#define VDR_IQ3_S_Q8_1_MMVQ 2
|
|
#define VDR_IQ3_S_Q8_1_MMQ 2
|
|
|
|
// TODO: don't use lookup table for signs
|
|
static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
|
|
|
|
const block_iq3_s * bq3 = (const block_iq3_s *) vbq + kbx;
|
|
|
|
const int2 qs_packed = make_int2(get_int_b2(bq3->qs, iqs + 0), get_int_b2(bq3->qs, iqs + 1));
|
|
const uint8_t * qs = (const uint8_t *) &qs_packed;
|
|
|
|
const int qh = bq3->qh[iqs/2];
|
|
|
|
const int signs_packed_32 = get_int_b2(bq3->signs, iqs/2);
|
|
const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32;
|
|
|
|
int sumi = 0;
|
|
#pragma unroll
|
|
for (int l0 = 0; l0 < 8; l0 += 2) {
|
|
const int2 grid_pos = make_int2(
|
|
iq3s_grid[qs[l0 + 0] | ((qh << (8 - l0)) & 0x100)],
|
|
iq3s_grid[qs[l0 + 1] | ((qh << (7 - l0)) & 0x100)]);
|
|
|
|
const int signs0 = __vcmpne4(((signs_packed_8[l0/2] & 0x03) << 7) | ((signs_packed_8[l0/2] & 0x0C) << 21), 0x00000000);
|
|
const int signs1 = __vcmpne4(((signs_packed_8[l0/2] & 0x30) << 3) | ((signs_packed_8[l0/2] & 0xC0) << 17), 0x00000000);
|
|
|
|
const int grid_l = __vsub4(grid_pos.x ^ signs0, signs0);
|
|
const int grid_h = __vsub4(grid_pos.y ^ signs1, signs1);
|
|
|
|
const int u0 = get_int_b4(bq8_1[iqs/2].qs, l0 + 0);
|
|
const int u1 = get_int_b4(bq8_1[iqs/2].qs, l0 + 1);
|
|
|
|
sumi = ggml_cuda_dp4a(grid_l, u0, sumi);
|
|
sumi = ggml_cuda_dp4a(grid_h, u1, sumi);
|
|
}
|
|
|
|
sumi *= 1 + 2*((bq3->scales[iqs/4] >> ((iqs << 1) & 0x04)) & 0x0F);
|
|
|
|
const float d = __half2float(bq3->d) * __low2float(bq8_1[iqs/2].ds);
|
|
return d * sumi;
|
|
}
|
|
|
|
#define VDR_IQ1_S_Q8_1_MMVQ 1
|
|
#define VDR_IQ1_S_Q8_1_MMQ 1
|
|
|
|
static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
|
|
const block_iq1_s * bq1 = (const block_iq1_s *) vbq + kbx;
|
|
|
|
const int qs_packed = get_int_b2(bq1->qs, iqs);
|
|
const uint8_t * qs = (const uint8_t *) &qs_packed;
|
|
|
|
const int qh = bq1->qh[iqs];
|
|
|
|
int sumi = 0;
|
|
#pragma unroll
|
|
for (int l0 = 0; l0 < 8; l0 += 2) {
|
|
const int grid = iq1s_grid_gpu[qs[l0/2] | (((qh >> 3*(l0/2)) & 0x07) << 8)];
|
|
|
|
const int grid0 = (grid >> 0) & 0x0F0F0F0F;
|
|
const int grid1 = (grid >> 4) & 0x0F0F0F0F;
|
|
|
|
const int u0 = get_int_b4(bq8_1[iqs].qs, l0 + 0);
|
|
const int u1 = get_int_b4(bq8_1[iqs].qs, l0 + 1);
|
|
|
|
sumi = ggml_cuda_dp4a(grid0, u0, sumi);
|
|
sumi = ggml_cuda_dp4a(grid1, u1, sumi);
|
|
}
|
|
|
|
const float d1q = __half2float(bq1->d) * (((qh >> 11) & 0x0E) + 1);
|
|
const float delta = -1.0f + IQ1S_DELTA - (qh & 0x8000) * (2.0f*IQ1S_DELTA/0x8000);
|
|
const float2 ds = __half22float2(bq8_1[iqs].ds);
|
|
return d1q * (ds.x*sumi + ds.y*delta);
|
|
}
|
|
|
|
#define VDR_IQ1_M_Q8_1_MMVQ 1
|
|
#define VDR_IQ1_M_Q8_1_MMQ 1
|
|
|
|
static __device__ __forceinline__ float vec_dot_iq1_m_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
|
|
|
|
const block_iq1_m * bq1 = (const block_iq1_m *) vbq + kbx;
|
|
|
|
const int qs_packed = get_int_b4(bq1->qs, iqs);
|
|
const uint8_t * qs = (const uint8_t *) &qs_packed;
|
|
|
|
int sumi[2] = {0};
|
|
float sumf[2] = {0.0f};
|
|
#pragma unroll
|
|
for (int l0 = 0; l0 < 8; l0 += 2) {
|
|
const int qhl = bq1->qh[2*iqs + l0/4] >> (4 * ((l0/2) % 2));
|
|
|
|
const int grid = iq1s_grid_gpu[qs[l0/2] | ((qhl & 0x07) << 8)];
|
|
|
|
const int grid0 = (grid >> 0) & 0x0F0F0F0F;
|
|
const int grid1 = (grid >> 4) & 0x0F0F0F0F;
|
|
|
|
const int u0 = get_int_b4(bq8_1[iqs].qs, l0 + 0);
|
|
const int u1 = get_int_b4(bq8_1[iqs].qs, l0 + 1);
|
|
|
|
sumi[l0/4] = ggml_cuda_dp4a(grid0, u0, sumi[l0/4]);
|
|
sumi[l0/4] = ggml_cuda_dp4a(grid1, u1, sumi[l0/4]);
|
|
|
|
const float delta = -1.0f + IQ1M_DELTA - (qhl & 0x08) * (2.0f*IQ1M_DELTA/0x08);
|
|
int sumy = 0;
|
|
sumy = ggml_cuda_dp4a(u0, 0x01010101, sumy);
|
|
sumy = ggml_cuda_dp4a(u1, 0x01010101, sumy);
|
|
sumf[l0/4] += delta*sumy;
|
|
}
|
|
|
|
const uint16_t * sc = (const uint16_t *) bq1->scales;
|
|
|
|
iq1m_scale_t scale;
|
|
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00F0) | ((sc[2] >> 4) & 0x0F00) | (sc[3] & 0xF000);
|
|
const float d = __half2float(scale.f16) * __low2float(bq8_1[iqs].ds);
|
|
|
|
const int tmp = sc[iqs/2] >> (6*(iqs%2));
|
|
const int sc0 = 2*((tmp >> 0) & 0x07) + 1;
|
|
const int sc1 = 2*((tmp >> 3) & 0x07) + 1;
|
|
return d * ((sumi[0] + sumf[0]) * sc0 + (sumi[1] + sumf[1]) * sc1);
|
|
}
|
|
|
|
static __device__ __forceinline__ int2 get_int_from_table_16(const int & q4) {
|
|
const int q0_32 = (q4 >> 0) & 0x0F0F0F0F;
|
|
const int8_t * q0_8 = (const int8_t *) &q0_32;
|
|
const char4 val0_8 = make_char4(
|
|
kvalues_iq4nl[q0_8[0]], kvalues_iq4nl[q0_8[1]], kvalues_iq4nl[q0_8[2]], kvalues_iq4nl[q0_8[3]]);
|
|
|
|
const int q1_32 = (q4 >> 4) & 0x0F0F0F0F;
|
|
const int8_t * q1_8 = (const int8_t *) &q1_32;
|
|
const char4 val1_8 = make_char4(
|
|
kvalues_iq4nl[q1_8[0]], kvalues_iq4nl[q1_8[1]], kvalues_iq4nl[q1_8[2]], kvalues_iq4nl[q1_8[3]]);
|
|
|
|
return make_int2(*((const int *) &val0_8), *((const int *) &val1_8));
|
|
}
|
|
|
|
#define VDR_IQ4_NL_Q8_1_MMVQ 2
|
|
#define VDR_IQ4_NL_Q8_1_MMQ 4
|
|
|
|
static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
|
|
|
|
const block_iq4_nl * bq4 = (const block_iq4_nl *) vbq + kbx;
|
|
|
|
const int * q8 = (const int *) bq8_1->qs + iqs;
|
|
|
|
int sumi = 0;
|
|
#pragma unroll
|
|
for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) {
|
|
const int aux_q4 = get_int_b2(bq4->qs, iqs + l);
|
|
const int2 v = get_int_from_table_16(aux_q4);
|
|
|
|
sumi = ggml_cuda_dp4a(v.x, q8[l + 0], sumi);
|
|
sumi = ggml_cuda_dp4a(v.y, q8[l + 4], sumi);
|
|
}
|
|
|
|
const float d = __half2float(bq4->d) * __low2float(bq8_1->ds);
|
|
return d * sumi;
|
|
}
|
|
|
|
#define VDR_IQ4_XS_Q8_1_MMVQ 4
|
|
#define VDR_IQ4_XS_Q8_1_MMQ 4
|
|
|
|
static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
|
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
|
|
|
|
const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq + kbx;
|
|
|
|
int sumi = 0;
|
|
#pragma unroll
|
|
for (int j = 0; j < 4; ++j) {
|
|
const int aux_q4 = get_int_b4(bq4->qs, iqs + j);
|
|
const int2 v = get_int_from_table_16(aux_q4);
|
|
|
|
const int u0 = get_int_b4(bq8_1[iqs/4].qs, j + 0);
|
|
const int u1 = get_int_b4(bq8_1[iqs/4].qs, j + 4);
|
|
|
|
sumi = ggml_cuda_dp4a(v.x, u0, sumi);
|
|
sumi = ggml_cuda_dp4a(v.y, u1, sumi);
|
|
}
|
|
|
|
const int ls = ((bq4->scales_l[iqs/8] >> (iqs & 0x04)) & 0x0F) | (((bq4->scales_h >> (iqs/2)) & 0x03) << 4);
|
|
sumi *= ls - 32;
|
|
|
|
const float d = __half2float(bq4->d) * __low2float(bq8_1[iqs/4].ds);
|
|
return d * sumi;
|
|
}
|