mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-07 19:33:58 +01:00
ba1cb19cdd
* Barebone Qwen2VL LLM convertor * Add Qwen2VL cli entrypoint * [WIP] add qwen2vl arch * Verify m-rope output * Add vl-rope/2d-rope support for qwen2vl ViT * update qwen2vl cli tool * update 5D tensor op workaround * [WIP] qwen2vl vision model * make batch and clip utils compatible with qwen2vl * [WIP] create inference workflow, gguf convert script but fix * correcting vision-rope behavior, add the missing last layer back to ViT * add arg parser to qwen2vl_surgery * replace variable size array with vector * cuda-gdb cmake preset * add fp32 mrope, vision rope kernel * add fp16 support for qwen2vl and m-rope * add `GGML_ROPE_TYPE_MROPE`, `GGML_ROPE_TYPE_VISION` * fix rope op mode switching, out dated func args * update `llama_hparams` * update to keep up stream changes * resolve linter, test errors * add makefile entry, update speical image padding token * add mrope unit test, fix few compiler warnings * rename `mrope` related function, params * minor updates on debug util, bug fixs * add `m-rope` testcase to `test-backend-ops` * Apply suggestions from code review Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * fix traililng whitespce * store `llama_hparams.rope_sections` with fixed size array * update position id tensor size check in GGML_OP_ROPE * minor updates * update `ggml_backend_*_supports_op` of unsupported backends * remote old `rope_section` compare operator --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
263 lines
7.9 KiB
C++
263 lines
7.9 KiB
C++
#include "ggml.h"
|
|
#include "ggml-cpu.h"
|
|
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cassert>
|
|
#include <vector>
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
#if defined(__GNUC__)
|
|
#pragma GCC diagnostic ignored "-Wdouble-promotion"
|
|
#endif
|
|
|
|
#define MAX_NARGS 3
|
|
|
|
#undef MIN
|
|
#undef MAX
|
|
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
|
|
|
#define GGML_SILU_FP16
|
|
|
|
//
|
|
// logging
|
|
//
|
|
|
|
#if (GGML_DEBUG >= 1)
|
|
#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
|
|
#else
|
|
#define GGML_PRINT_DEBUG(...)
|
|
#endif
|
|
|
|
#if (GGML_DEBUG >= 5)
|
|
#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
|
|
#else
|
|
#define GGML_PRINT_DEBUG_5(...)
|
|
#endif
|
|
|
|
#if (GGML_DEBUG >= 10)
|
|
#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
|
|
#else
|
|
#define GGML_PRINT_DEBUG_10(...)
|
|
#endif
|
|
|
|
#define GGML_PRINT(...) printf(__VA_ARGS__)
|
|
|
|
static float frand(void) {
|
|
return (float)rand()/(float)RAND_MAX;
|
|
}
|
|
|
|
static int irand(int n) {
|
|
if (n == 0) return 0;
|
|
return rand()%n;
|
|
}
|
|
|
|
static void get_random_dims(int64_t * dims, int ndims) {
|
|
dims[0] = dims[1] = dims[2] = dims[3] = 1;
|
|
|
|
for (int i = 0; i < ndims; i++) {
|
|
dims[i] = 1 + irand(4);
|
|
}
|
|
}
|
|
|
|
static struct ggml_tensor * get_random_tensor_f32(
|
|
struct ggml_context * ctx0,
|
|
int ndims,
|
|
const int64_t ne[],
|
|
float fmin,
|
|
float fmax) {
|
|
struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne);
|
|
|
|
switch (ndims) {
|
|
case 1:
|
|
for (int i0 = 0; i0 < ne[0]; i0++) {
|
|
((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin;
|
|
}
|
|
break;
|
|
case 2:
|
|
for (int i1 = 0; i1 < ne[1]; i1++) {
|
|
for (int i0 = 0; i0 < ne[0]; i0++) {
|
|
((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
|
|
}
|
|
}
|
|
break;
|
|
case 3:
|
|
for (int i2 = 0; i2 < ne[2]; i2++) {
|
|
for (int i1 = 0; i1 < ne[1]; i1++) {
|
|
for (int i0 = 0; i0 < ne[0]; i0++) {
|
|
((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case 4:
|
|
for (int i3 = 0; i3 < ne[3]; i3++) {
|
|
for (int i2 = 0; i2 < ne[2]; i2++) {
|
|
for (int i1 = 0; i1 < ne[1]; i1++) {
|
|
for (int i0 = 0; i0 < ne[0]; i0++) {
|
|
((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
assert(false);
|
|
};
|
|
|
|
return result;
|
|
}
|
|
|
|
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
|
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads, nullptr);
|
|
|
|
if (plan.work_size > 0) {
|
|
buf.resize(plan.work_size);
|
|
plan.work_data = buf.data();
|
|
}
|
|
|
|
ggml_graph_compute(graph, &plan);
|
|
}
|
|
|
|
int main(int /*argc*/, const char ** /*argv*/) {
|
|
struct ggml_init_params params = {
|
|
/* .mem_size = */ 128*1024*1024,
|
|
/* .mem_buffer = */ NULL,
|
|
/* .no_alloc = */ false,
|
|
};
|
|
|
|
std::vector<uint8_t> work_buffer;
|
|
|
|
struct ggml_context * ctx0 = ggml_init(params);
|
|
|
|
struct ggml_tensor * x;
|
|
|
|
// rope f32
|
|
for (int m = 0; m < 5; ++m) {
|
|
const int ndims = 4;
|
|
|
|
const int64_t n_rot = 128;
|
|
const int64_t ne[4] = { 2*n_rot, 32, 73, 1 };
|
|
|
|
const int n_past_0 = 100;
|
|
const int n_past_2 = 33;
|
|
|
|
struct ggml_tensor * r0;
|
|
struct ggml_tensor * r1;
|
|
struct ggml_tensor * r2;
|
|
x = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
|
|
int mode = -1;
|
|
|
|
if (m < 3) {
|
|
struct ggml_tensor * p0 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]);
|
|
struct ggml_tensor * p1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]);
|
|
struct ggml_tensor * p2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]);
|
|
|
|
for (int i = 0; i < ne[2]; ++i) {
|
|
((int32_t *) p0->data)[i] = n_past_0 + i;
|
|
((int32_t *) p1->data)[i] = n_past_2 - n_past_0;
|
|
((int32_t *) p2->data)[i] = n_past_2 + i;
|
|
}
|
|
// test mode 0, 2, 4 (standard, GPT-NeoX, GLM)
|
|
mode = m == 0 ? 0 : m == 1 ? 2 : 4;
|
|
|
|
// 100, 101, 102, ..., 172
|
|
r0 = ggml_rope(ctx0, x, p0, n_rot, mode);
|
|
// -67, -67, -67, ..., -67
|
|
r1 = ggml_rope(ctx0, r0, p1, n_rot, mode); // "context swap", i.e. forget n_past_0 - n_past_2 tokens
|
|
|
|
// 33, 34, 35, ..., 105
|
|
r2 = ggml_rope(ctx0, x, p2, n_rot, mode);
|
|
} else {
|
|
// testing multi-dimension rope position embedding mode
|
|
struct ggml_tensor * p0 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2] * 4);
|
|
struct ggml_tensor * p1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2] * 4);
|
|
struct ggml_tensor * p2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2] * 4);
|
|
|
|
int sections[4] = {16, 24, 24, 0};
|
|
mode = (m == 3) ? GGML_ROPE_TYPE_MROPE : GGML_ROPE_TYPE_VISION;
|
|
|
|
for (int i = 0; i < ne[2]; ++i) {
|
|
for (int j = 0; j < 4; ++j) {
|
|
((int32_t *) p0->data)[i + ne[2] * j] = n_past_0 + i + j;
|
|
((int32_t *) p1->data)[i + ne[2] * j] = n_past_2 - n_past_0;
|
|
((int32_t *) p2->data)[i + ne[2] * j] = n_past_2 + i + j;
|
|
}
|
|
}
|
|
|
|
// [[100, 101, 102, ..., 172],
|
|
// [101, 102, 103, ..., 173],
|
|
// [102, 103, 104, ..., 174]]
|
|
r0 = ggml_rope_multi(
|
|
ctx0, x, p0, nullptr,
|
|
n_rot, sections, mode, 32768, 1000000, 1, 0, 1, 32, 1);
|
|
// [[-67, -67, -67, ..., -67]
|
|
// [-67, -67, -67, ..., -67]
|
|
// [-67, -67, -67, ..., -67]]
|
|
r1 = ggml_rope_multi(
|
|
ctx0, r0, p1, nullptr,
|
|
n_rot, sections, mode, 32768, 1000000, 1, 0, 1, 32, 1);
|
|
|
|
// [[33, 34, 35, ..., 105]
|
|
// [34, 35, 36, ..., 106]
|
|
// [35, 36, 37, ..., 107]]
|
|
r2 = ggml_rope_multi(
|
|
ctx0, x, p2, nullptr,
|
|
n_rot, sections, mode, 32768, 1000000, 1, 0, 1, 32, 1);
|
|
}
|
|
|
|
ggml_cgraph * gf = ggml_new_graph(ctx0);
|
|
|
|
ggml_build_forward_expand(gf, r0);
|
|
ggml_build_forward_expand(gf, r1);
|
|
ggml_build_forward_expand(gf, r2);
|
|
|
|
ggml_graph_compute_helper(work_buffer, gf, 4);
|
|
|
|
// check that r1 and r2 are the same
|
|
{
|
|
double sum0 = 0.0f;
|
|
double sum1 = 0.0f;
|
|
double diff = 0.0f;
|
|
|
|
const float * r1_data = (float *) r1->data;
|
|
const float * r2_data = (float *) r2->data;
|
|
|
|
const int n_elements = ggml_nelements(r1);
|
|
|
|
for (int i = 0; i < n_elements; ++i) {
|
|
sum0 += fabs(r1_data[i]);
|
|
sum1 += fabs(r2_data[i]);
|
|
diff += fabs(r1_data[i] - r2_data[i]);
|
|
//if (fabs(r1_data[i] - r2_data[i]) > 0.0001f) {
|
|
// printf("%d: %f %f\n", i, r1_data[i], r2_data[i]);
|
|
// printf("diff: %f\n", fabs(r1_data[i] - r2_data[i]));
|
|
//}
|
|
}
|
|
|
|
//for (int i = 4096; i < 4096 + 128; ++i) {
|
|
// printf("%f %f\n", r1_data[i], r2_data[i]);
|
|
//}
|
|
|
|
printf("mode: %d\n", mode);
|
|
printf("sum0: %f\n", sum0);
|
|
printf("sum1: %f\n", sum1);
|
|
printf("diff: %f\n", diff);
|
|
printf("rel err: %f\n", diff / sum0);
|
|
printf("rel err: %f\n", diff / sum1);
|
|
|
|
GGML_ASSERT(diff / sum0 < 0.0001f);
|
|
GGML_ASSERT(diff / sum1 < 0.0001f);
|
|
}
|
|
}
|
|
|
|
ggml_free(ctx0);
|
|
|
|
return 0;
|
|
}
|