mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 05:17:21 +01:00
561 lines
16 KiB
C++
561 lines
16 KiB
C++
#include "utils.h"
|
|
|
|
#include <cassert>
|
|
#include <cstring>
|
|
#include <fstream>
|
|
#include <regex>
|
|
|
|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|
for (int i = 1; i < argc; i++) {
|
|
std::string arg = argv[i];
|
|
|
|
if (arg == "-s" || arg == "--seed") {
|
|
params.seed = std::stoi(argv[++i]);
|
|
} else if (arg == "-t" || arg == "--threads") {
|
|
params.n_threads = std::stoi(argv[++i]);
|
|
} else if (arg == "-p" || arg == "--prompt") {
|
|
params.prompt = argv[++i];
|
|
} else if (arg == "-n" || arg == "--n_predict") {
|
|
params.n_predict = std::stoi(argv[++i]);
|
|
} else if (arg == "--top_k") {
|
|
params.top_k = std::stoi(argv[++i]);
|
|
} else if (arg == "--top_p") {
|
|
params.top_p = std::stof(argv[++i]);
|
|
} else if (arg == "--temp") {
|
|
params.temp = std::stof(argv[++i]);
|
|
} else if (arg == "-b" || arg == "--batch_size") {
|
|
params.n_batch = std::stoi(argv[++i]);
|
|
} else if (arg == "-m" || arg == "--model") {
|
|
params.model = argv[++i];
|
|
} else if (arg == "-h" || arg == "--help") {
|
|
gpt_print_usage(argc, argv, params);
|
|
exit(0);
|
|
} else {
|
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
|
gpt_print_usage(argc, argv, params);
|
|
exit(0);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void gpt_print_usage(int argc, char ** argv, const gpt_params & params) {
|
|
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "options:\n");
|
|
fprintf(stderr, " -h, --help show this help message and exit\n");
|
|
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
|
|
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
|
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
|
|
fprintf(stderr, " prompt to start generation with (default: random)\n");
|
|
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
|
|
fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
|
|
fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
|
|
fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
|
|
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
|
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
|
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
std::string gpt_random_prompt(std::mt19937 & rng) {
|
|
const int r = rng() % 10;
|
|
switch (r) {
|
|
case 0: return "So";
|
|
case 1: return "Once upon a time";
|
|
case 2: return "When";
|
|
case 3: return "The";
|
|
case 4: return "After";
|
|
case 5: return "If";
|
|
case 6: return "import";
|
|
case 7: return "He";
|
|
case 8: return "She";
|
|
case 9: return "They";
|
|
default: return "To";
|
|
}
|
|
|
|
return "The";
|
|
}
|
|
|
|
void replace(std::string & str, const std::string & needle, const std::string & replacement) {
|
|
size_t pos = 0;
|
|
while ((pos = str.find(needle, pos)) != std::string::npos) {
|
|
str.replace(pos, needle.length(), replacement);
|
|
pos += replacement.length();
|
|
}
|
|
}
|
|
|
|
std::map<std::string, int32_t> json_parse(const std::string & fname) {
|
|
std::map<std::string, int32_t> result;
|
|
|
|
// read file into string
|
|
std::string json;
|
|
{
|
|
std::ifstream ifs(fname);
|
|
if (!ifs) {
|
|
fprintf(stderr, "Failed to open %s\n", fname.c_str());
|
|
exit(1);
|
|
}
|
|
|
|
json = std::string((std::istreambuf_iterator<char>(ifs)),
|
|
(std::istreambuf_iterator<char>()));
|
|
}
|
|
|
|
if (json[0] != '{') {
|
|
return result;
|
|
}
|
|
|
|
// parse json
|
|
{
|
|
bool has_key = false;
|
|
bool in_token = false;
|
|
|
|
std::string str_key = "";
|
|
std::string str_val = "";
|
|
|
|
int n = json.size();
|
|
for (int i = 1; i < n; ++i) {
|
|
if (!in_token) {
|
|
if (json[i] == ' ') continue;
|
|
if (json[i] == '"') {
|
|
in_token = true;
|
|
continue;
|
|
}
|
|
} else {
|
|
if (json[i] == '\\' && i+1 < n) {
|
|
if (has_key == false) {
|
|
str_key += json[i];
|
|
} else {
|
|
str_val += json[i];
|
|
}
|
|
++i;
|
|
} else if (json[i] == '"') {
|
|
if (has_key == false) {
|
|
has_key = true;
|
|
++i;
|
|
while (json[i] == ' ') ++i;
|
|
++i; // :
|
|
while (json[i] == ' ') ++i;
|
|
if (json[i] != '\"') {
|
|
while (json[i] != ',' && json[i] != '}') {
|
|
str_val += json[i++];
|
|
}
|
|
has_key = false;
|
|
} else {
|
|
in_token = true;
|
|
continue;
|
|
}
|
|
} else {
|
|
has_key = false;
|
|
}
|
|
|
|
::replace(str_key, "\\u0120", " " ); // \u0120 -> space
|
|
::replace(str_key, "\\u010a", "\n"); // \u010a -> new line
|
|
::replace(str_key, "\\\"", "\""); // \\\" -> "
|
|
|
|
try {
|
|
result[str_key] = std::stoi(str_val);
|
|
} catch (...) {
|
|
//fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str());
|
|
|
|
}
|
|
str_key = "";
|
|
str_val = "";
|
|
in_token = false;
|
|
continue;
|
|
}
|
|
if (has_key == false) {
|
|
str_key += json[i];
|
|
} else {
|
|
str_val += json[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
|
|
std::vector<std::string> words;
|
|
|
|
// first split the text into words
|
|
{
|
|
std::string str = text;
|
|
std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
|
|
|
|
std::regex re(pat);
|
|
std::smatch m;
|
|
|
|
while (std::regex_search(str, m, re)) {
|
|
for (auto x : m) {
|
|
words.push_back(x);
|
|
}
|
|
str = m.suffix();
|
|
}
|
|
}
|
|
|
|
// find the longest tokens that form the words:
|
|
std::vector<gpt_vocab::id> tokens;
|
|
for (const auto & word : words) {
|
|
if (word.size() == 0) continue;
|
|
|
|
int i = 0;
|
|
int n = word.size();
|
|
while (i < n) {
|
|
int j = n;
|
|
while (j > i) {
|
|
auto it = vocab.token_to_id.find(word.substr(i, j-i));
|
|
if (it != vocab.token_to_id.end()) {
|
|
tokens.push_back(it->second);
|
|
i = j;
|
|
break;
|
|
}
|
|
--j;
|
|
}
|
|
if (i == n) {
|
|
break;
|
|
}
|
|
if (j == i) {
|
|
auto sub = word.substr(i, 1);
|
|
if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
|
|
tokens.push_back(vocab.token_to_id.at(sub));
|
|
} else {
|
|
fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
|
|
}
|
|
++i;
|
|
}
|
|
}
|
|
}
|
|
|
|
return tokens;
|
|
}
|
|
|
|
std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, const std::string & text, bool bos) {
|
|
//auto res = gpt_tokenize(vocab, text);
|
|
|
|
//if (bos) {
|
|
// res.insert(res.begin(), 1); // TODO: replace with vocab.bos
|
|
//}
|
|
|
|
std::vector<gpt_vocab::id> res;
|
|
|
|
if (bos) {
|
|
res.push_back(1); // TODO: replace with vocab.bos
|
|
}
|
|
|
|
//find the longest token that matches the text
|
|
int pos = 0;
|
|
while (true) {
|
|
int l = 0;
|
|
int t = 0;
|
|
for (const auto & kv : vocab.id_to_token) {
|
|
if (kv.second.size() < l) continue;
|
|
if (kv.second.size() > text.size() - pos) continue;
|
|
if (text.substr(pos, kv.second.size()) == kv.second) {
|
|
l = kv.second.size();
|
|
t = kv.first;
|
|
}
|
|
}
|
|
|
|
if (l == 0) {
|
|
break;
|
|
}
|
|
|
|
res.push_back(t);
|
|
pos += l;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
|
|
printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
|
|
|
|
vocab.token_to_id = ::json_parse(fname);
|
|
|
|
for (const auto & kv : vocab.token_to_id) {
|
|
vocab.id_to_token[kv.second] = kv.first;
|
|
}
|
|
|
|
printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());
|
|
|
|
// print the vocabulary
|
|
//for (auto kv : vocab.token_to_id) {
|
|
// printf("'%s' -> %d\n", kv.first.data(), kv.second);
|
|
//}
|
|
|
|
return true;
|
|
}
|
|
|
|
gpt_vocab::id gpt_sample_top_k_top_p(
|
|
const gpt_vocab & vocab,
|
|
const float * logits,
|
|
int top_k,
|
|
double top_p,
|
|
double temp,
|
|
std::mt19937 & rng) {
|
|
int n_logits = vocab.id_to_token.size();
|
|
|
|
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
|
logits_id.reserve(n_logits);
|
|
|
|
{
|
|
const double scale = 1.0/temp;
|
|
for (int i = 0; i < n_logits; ++i) {
|
|
logits_id.push_back(std::make_pair(logits[i]*scale, i));
|
|
}
|
|
}
|
|
|
|
// find the top K tokens
|
|
std::partial_sort(
|
|
logits_id.begin(),
|
|
logits_id.begin() + top_k, logits_id.end(),
|
|
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
|
return a.first > b.first;
|
|
});
|
|
|
|
logits_id.resize(top_k);
|
|
|
|
double maxl = -INFINITY;
|
|
for (const auto & kv : logits_id) {
|
|
maxl = std::max(maxl, kv.first);
|
|
}
|
|
|
|
// compute probs for the top K tokens
|
|
std::vector<double> probs;
|
|
probs.reserve(logits_id.size());
|
|
|
|
double sum = 0.0;
|
|
for (const auto & kv : logits_id) {
|
|
double p = exp(kv.first - maxl);
|
|
probs.push_back(p);
|
|
sum += p;
|
|
}
|
|
|
|
// normalize the probs
|
|
for (auto & p : probs) {
|
|
p /= sum;
|
|
}
|
|
|
|
if (top_p < 1.0f) {
|
|
double cumsum = 0.0f;
|
|
for (int i = 0; i < top_k; i++) {
|
|
cumsum += probs[i];
|
|
if (cumsum >= top_p) {
|
|
top_k = i + 1;
|
|
probs.resize(top_k);
|
|
logits_id.resize(top_k);
|
|
break;
|
|
}
|
|
}
|
|
|
|
cumsum = 1.0/cumsum;
|
|
for (int i = 0; i < (int) probs.size(); i++) {
|
|
probs[i] *= cumsum;
|
|
}
|
|
}
|
|
|
|
//printf("\n");
|
|
//for (int i = 0; i < (int) probs.size(); i++) {
|
|
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
|
|
//}
|
|
//exit(0);
|
|
|
|
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
|
int idx = dist(rng);
|
|
|
|
return logits_id[idx].second;
|
|
}
|
|
|
|
gpt_vocab::id llama_sample_top_p(
|
|
const gpt_vocab & vocab,
|
|
const float * logits,
|
|
double top_p,
|
|
double temp,
|
|
std::mt19937 & rng) {
|
|
int n_logits = vocab.id_to_token.size();
|
|
|
|
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
|
logits_id.reserve(n_logits);
|
|
|
|
{
|
|
const double scale = 1.0/temp;
|
|
for (int i = 0; i < n_logits; ++i) {
|
|
logits_id.push_back(std::make_pair(logits[i]*scale, i));
|
|
}
|
|
}
|
|
|
|
std::sort(
|
|
logits_id.begin(),
|
|
logits_id.end(),
|
|
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
|
return a.first > b.first;
|
|
});
|
|
|
|
double maxl = -INFINITY;
|
|
for (const auto & kv : logits_id) {
|
|
maxl = std::max(maxl, kv.first);
|
|
}
|
|
|
|
// compute probs for the top K tokens
|
|
std::vector<double> probs;
|
|
probs.reserve(logits_id.size());
|
|
|
|
double sum = 0.0;
|
|
for (const auto & kv : logits_id) {
|
|
double p = exp(kv.first - maxl);
|
|
probs.push_back(p);
|
|
sum += p;
|
|
}
|
|
|
|
// normalize the probs
|
|
for (auto & p : probs) {
|
|
p /= sum;
|
|
}
|
|
|
|
if (top_p < 1.0f) {
|
|
double cumsum = 0.0f;
|
|
for (int i = 0; i < (int) probs.size(); i++) {
|
|
cumsum += probs[i];
|
|
if (cumsum >= top_p) {
|
|
probs.resize(i + 1);
|
|
logits_id.resize(i + 1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
cumsum = 1.0/cumsum;
|
|
for (int i = 0; i < (int) probs.size(); i++) {
|
|
probs[i] *= cumsum;
|
|
}
|
|
}
|
|
|
|
//printf("\n");
|
|
//for (int i = 0; i < (int) 10; i++) {
|
|
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
|
|
//}
|
|
//printf("\n\n");
|
|
//exit(0);
|
|
|
|
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
|
int idx = dist(rng);
|
|
|
|
return logits_id[idx].second;
|
|
}
|
|
|
|
|
|
size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist) {
|
|
const int nb = k / qk;
|
|
const size_t bs = (sizeof(float) + sizeof(uint8_t)*qk/2);
|
|
const size_t row_size = nb*bs;
|
|
|
|
assert(k % qk == 0);
|
|
|
|
uint8_t pp[qk/2];
|
|
|
|
char * pdst = (char *) dst;
|
|
|
|
for (int j = 0; j < n; j += k) {
|
|
uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
|
|
uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float));
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
float amax = 0.0f; // absolute max
|
|
|
|
{
|
|
for (int l = 0; l < qk; l++) {
|
|
const float v = src[j + i*qk + l];
|
|
amax = std::max(amax, fabsf(v));
|
|
}
|
|
|
|
const float d = amax / ((1 << 3) - 1);
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
*(float *) pd = d;
|
|
pd += bs;
|
|
|
|
for (int l = 0; l < qk; l += 2) {
|
|
const float v0 = (src[j + i*qk + l + 0])*id;
|
|
const float v1 = (src[j + i*qk + l + 1])*id;
|
|
|
|
const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
|
|
const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
|
|
|
|
assert(vi0 >= 0 && vi0 < 16);
|
|
assert(vi1 >= 0 && vi1 < 16);
|
|
|
|
hist[vi0]++;
|
|
hist[vi1]++;
|
|
|
|
pp[l/2] = vi0 | (vi1 << 4);
|
|
}
|
|
|
|
memcpy(pb, pp, sizeof(pp));
|
|
pb += bs;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (n/k)*row_size;
|
|
}
|
|
|
|
size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist) {
|
|
const int nb = k / qk;
|
|
const size_t row_size = nb*(2*sizeof(float) + sizeof(uint8_t)*qk/2);
|
|
|
|
assert(k % qk == 0);
|
|
|
|
uint8_t pp[qk/2];
|
|
|
|
char * pdst = (char *) dst;
|
|
|
|
for (int j = 0; j < n; j += k) {
|
|
float * pm = (float *) (pdst + (j/k)*row_size);
|
|
float * pd = (float *) (pm + nb);
|
|
uint8_t * pb = (uint8_t *) (pd + nb);
|
|
|
|
//printf("n = %d, k = %d, nb = %d, row_size = %d, j = %d, pm = %p, pd = %p, pb = %p\n", n, k, nb, row_size, j, pm, pd, pb);
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
float min = std::numeric_limits<float>::max();
|
|
float max = std::numeric_limits<float>::min();
|
|
|
|
{
|
|
for (int l = 0; l < qk; l++) {
|
|
const float v = src[j + i*qk + l];
|
|
if (v < min) min = v;
|
|
if (v > max) max = v;
|
|
}
|
|
|
|
const float d = (max - min) / ((1 << 4) - 1);
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
pm[i] = min;
|
|
pd[i] = d;
|
|
|
|
for (int l = 0; l < qk; l += 2) {
|
|
const float v0 = (src[j + i*qk + l + 0] - min)*id;
|
|
const float v1 = (src[j + i*qk + l + 1] - min)*id;
|
|
|
|
const uint8_t vi0 = round(v0);
|
|
const uint8_t vi1 = round(v1);
|
|
|
|
assert(vi0 >= 0 && vi0 < 16);
|
|
assert(vi1 >= 0 && vi1 < 16);
|
|
|
|
hist[vi0]++;
|
|
hist[vi1]++;
|
|
|
|
pp[l/2] = vi0 | (vi1 << 4);
|
|
}
|
|
|
|
memcpy(pb + i*qk/2, pp, sizeof(pp));
|
|
}
|
|
}
|
|
}
|
|
|
|
return (n/k)*row_size;
|
|
}
|