mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-19 08:20:10 +01:00
5656d10599
* MPI support, first cut * fix warnings, update README * fixes * wrap includes * PR comments * Update CMakeLists.txt * Add GH workflow, fix test * Add info to README * mpi : trying to move more MPI stuff into ggml-mpi (WIP) (#2099) * mpi : add names for layer inputs + prep ggml_mpi_graph_compute() * mpi : move all MPI logic into ggml-mpi Not tested yet * mpi : various fixes - communication now works but results are wrong * mpi : fix output tensor after MPI compute (still not working) * mpi : fix inference * mpi : minor * Add OpenMPI to GH action * [mpi] continue-on-error: true * mpi : fix after master merge * [mpi] Link MPI C++ libraries to fix OpenMPI * tests : fix new llama_backend API * [mpi] use MPI_INT32_T * mpi : factor out recv / send in functions and reuse * mpi : extend API to allow usage with outer backends (e.g. Metal) --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
182 lines
4.6 KiB
C++
182 lines
4.6 KiB
C++
#ifndef _GNU_SOURCE
|
|
#define _GNU_SOURCE
|
|
#endif
|
|
|
|
#include "common.h"
|
|
#include "llama.h"
|
|
#include "build-info.h"
|
|
|
|
#include <cassert>
|
|
#include <cinttypes>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <ctime>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
|
#include <signal.h>
|
|
#include <unistd.h>
|
|
#elif defined (_WIN32)
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#define NOMINMAX
|
|
#include <windows.h>
|
|
#include <signal.h>
|
|
#endif
|
|
|
|
|
|
|
|
int main(int argc, char ** argv)
|
|
{
|
|
gpt_params params;
|
|
|
|
//---------------------------------
|
|
// Print help :
|
|
//---------------------------------
|
|
|
|
if ( argc == 1 || argv[1][0] == '-' )
|
|
{
|
|
printf( "usage: %s MODEL_PATH [PROMPT]\n" , argv[0] );
|
|
return 1 ;
|
|
}
|
|
|
|
//---------------------------------
|
|
// Load parameters :
|
|
//---------------------------------
|
|
|
|
if ( argc >= 2 )
|
|
{
|
|
params.model = argv[1];
|
|
}
|
|
|
|
if ( argc >= 3 )
|
|
{
|
|
params.prompt = argv[2];
|
|
}
|
|
|
|
if ( params.prompt.empty() )
|
|
{
|
|
params.prompt = "Hello my name is";
|
|
}
|
|
|
|
//---------------------------------
|
|
// Init LLM :
|
|
//---------------------------------
|
|
|
|
llama_backend_init(params.numa);
|
|
|
|
llama_model * model;
|
|
llama_context * ctx;
|
|
|
|
std::tie(model, ctx) = llama_init_from_gpt_params( params );
|
|
|
|
if ( model == NULL )
|
|
{
|
|
fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
|
|
return 1;
|
|
}
|
|
|
|
//---------------------------------
|
|
// Tokenize the prompt :
|
|
//---------------------------------
|
|
|
|
std::vector<llama_token> tokens_list;
|
|
tokens_list = ::llama_tokenize( ctx , params.prompt , true );
|
|
|
|
const int max_context_size = llama_n_ctx( ctx );
|
|
const int max_tokens_list_size = max_context_size - 4 ;
|
|
|
|
if ( (int)tokens_list.size() > max_tokens_list_size )
|
|
{
|
|
fprintf( stderr , "%s: error: prompt too long (%d tokens, max %d)\n" ,
|
|
__func__ , (int)tokens_list.size() , max_tokens_list_size );
|
|
return 1;
|
|
}
|
|
|
|
fprintf( stderr, "\n\n" );
|
|
|
|
// Print the tokens from the prompt :
|
|
|
|
for( auto id : tokens_list )
|
|
{
|
|
printf( "%s" , llama_token_to_str( ctx , id ) );
|
|
}
|
|
|
|
fflush(stdout);
|
|
|
|
|
|
//---------------------------------
|
|
// Main prediction loop :
|
|
//---------------------------------
|
|
|
|
// The LLM keeps a contextual cache memory of previous token evaluation.
|
|
// Usually, once this cache is full, it is required to recompute a compressed context based on previous
|
|
// tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
|
|
// example, we will just stop the loop once this cache is full or once an end of stream is detected.
|
|
|
|
while ( llama_get_kv_cache_token_count( ctx ) < max_context_size )
|
|
{
|
|
//---------------------------------
|
|
// Evaluate the tokens :
|
|
//---------------------------------
|
|
|
|
if ( llama_eval( ctx , tokens_list.data() , tokens_list.size() , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) )
|
|
{
|
|
fprintf( stderr, "%s : failed to eval\n" , __func__ );
|
|
return 1;
|
|
}
|
|
|
|
tokens_list.clear();
|
|
|
|
//---------------------------------
|
|
// Select the best prediction :
|
|
//---------------------------------
|
|
|
|
llama_token new_token_id = 0;
|
|
|
|
auto logits = llama_get_logits( ctx );
|
|
auto n_vocab = llama_n_vocab( ctx ); // the size of the LLM vocabulary (in tokens)
|
|
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve( n_vocab );
|
|
|
|
for( llama_token token_id = 0 ; token_id < n_vocab ; token_id++ )
|
|
{
|
|
candidates.emplace_back( llama_token_data{ token_id , logits[ token_id ] , 0.0f } );
|
|
}
|
|
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
|
|
// Select it using the "Greedy sampling" method :
|
|
new_token_id = llama_sample_token_greedy( ctx , &candidates_p );
|
|
|
|
|
|
// is it an end of stream ?
|
|
if ( new_token_id == llama_token_eos() )
|
|
{
|
|
fprintf(stderr, " [end of text]\n");
|
|
break;
|
|
}
|
|
|
|
// Print the new token :
|
|
printf( "%s" , llama_token_to_str( ctx , new_token_id ) );
|
|
fflush( stdout );
|
|
|
|
// Push this new token for next evaluation :
|
|
tokens_list.push_back( new_token_id );
|
|
|
|
} // wend of main loop
|
|
|
|
llama_free( ctx );
|
|
llama_free_model( model );
|
|
|
|
llama_backend_free();
|
|
|
|
return 0;
|
|
}
|
|
|
|
// EOF
|