mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-15 14:50:51 +01:00
d1031cf49c
* sampling : refactor init to use llama_sampling_params * llama : combine repetition, frequency and presence penalties in 1 call * examples : remove embd-input and gptneox-wip * sampling : rename penalty params + reduce size of "prev" vector * sampling : add llama_sampling_print helper * sampling : hide prev behind API and apply #3661 ggml-ci
161 lines
6.7 KiB
C++
161 lines
6.7 KiB
C++
#include "ggml.h"
|
|
#include "llama.h"
|
|
|
|
#ifdef NDEBUG
|
|
#undef NDEBUG
|
|
#endif
|
|
|
|
#include <cmath>
|
|
#include <numeric>
|
|
#include <cassert>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
|
|
static void dump(const llama_token_data_array * candidates) {
|
|
for (size_t i = 0; i < candidates->size; i++) {
|
|
printf("%d: %f (%f)\n", candidates->data[i].id, candidates->data[i].p, candidates->data[i].logit);
|
|
}
|
|
}
|
|
|
|
#define DUMP(__candidates) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__candidates)); printf("-\n"); } while(0)
|
|
|
|
static void test_top_k(const std::vector<float> & probs, const std::vector<float> & expected_probs, int k) {
|
|
size_t n_vocab = probs.size();
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
float logit = log(probs[token_id]);
|
|
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
}
|
|
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
llama_sample_softmax(nullptr, &candidates_p);
|
|
DUMP(&candidates_p);
|
|
llama_sample_top_k(nullptr, &candidates_p, k, 1);
|
|
DUMP(&candidates_p);
|
|
|
|
GGML_ASSERT(candidates_p.size == expected_probs.size());
|
|
for (size_t i = 0; i < candidates_p.size; i++) {
|
|
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-5);
|
|
}
|
|
}
|
|
|
|
static void test_top_p(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
|
|
size_t n_vocab = probs.size();
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
float logit = log(probs[token_id]);
|
|
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
}
|
|
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
llama_sample_softmax(nullptr, &candidates_p);
|
|
DUMP(&candidates_p);
|
|
llama_sample_top_p(nullptr, &candidates_p, p, 1);
|
|
DUMP(&candidates_p);
|
|
|
|
GGML_ASSERT(candidates_p.size == expected_probs.size());
|
|
for (size_t i = 0; i < candidates_p.size; i++) {
|
|
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
|
|
}
|
|
}
|
|
|
|
static void test_tfs(const std::vector<float> & probs, const std::vector<float> & expected_probs, float z) {
|
|
size_t n_vocab = probs.size();
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
float logit = log(probs[token_id]);
|
|
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
}
|
|
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
DUMP(&candidates_p);
|
|
llama_sample_tail_free(nullptr, &candidates_p, z, 1);
|
|
DUMP(&candidates_p);
|
|
|
|
GGML_ASSERT(candidates_p.size == expected_probs.size());
|
|
for (size_t i = 0; i < candidates_p.size; i++) {
|
|
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
|
|
}
|
|
}
|
|
|
|
static void test_typical(const std::vector<float> & probs, const std::vector<float> & expected_probs, float p) {
|
|
size_t n_vocab = probs.size();
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
float logit = log(probs[token_id]);
|
|
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
}
|
|
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
DUMP(&candidates_p);
|
|
llama_sample_typical(nullptr, &candidates_p, p, 1);
|
|
DUMP(&candidates_p);
|
|
|
|
GGML_ASSERT(candidates_p.size == expected_probs.size());
|
|
for (size_t i = 0; i < candidates_p.size; i++) {
|
|
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
|
|
}
|
|
}
|
|
|
|
static void test_repetition_penalties(
|
|
const std::vector<float> & probs, const std::vector<llama_token> & last_tokens,
|
|
const std::vector<float> & expected_probs, float repeat_penalty, float alpha_frequency, float alpha_presence
|
|
) {
|
|
GGML_ASSERT(probs.size() == expected_probs.size());
|
|
|
|
size_t n_vocab = probs.size();
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
|
|
float logit = log(probs[token_id]);
|
|
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
|
|
}
|
|
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
llama_sample_softmax(nullptr, &candidates_p);
|
|
DUMP(&candidates_p);
|
|
llama_sample_repetition_penalties(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), repeat_penalty, alpha_frequency, alpha_presence);
|
|
llama_sample_softmax(nullptr, &candidates_p);
|
|
DUMP(&candidates_p);
|
|
|
|
GGML_ASSERT(candidates_p.size == expected_probs.size());
|
|
for (size_t i = 0; i < candidates_p.size; i++) {
|
|
GGML_ASSERT(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
|
|
}
|
|
}
|
|
|
|
int main(void) {
|
|
ggml_time_init();
|
|
|
|
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1);
|
|
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3);
|
|
|
|
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0);
|
|
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f);
|
|
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 0.8f);
|
|
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1);
|
|
|
|
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f);
|
|
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.75f);
|
|
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.99f);
|
|
|
|
test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f);
|
|
test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f);
|
|
|
|
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f, 0.0f, 0.0f);
|
|
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
|
|
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f, 0.0f, 0.0f);
|
|
|
|
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 1.0f, 5.0f, 5.0f);
|
|
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 1.0f, 5.0f, 5.0f);
|
|
test_repetition_penalties({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 1.0f, 5.0f, 5.0f);
|
|
|
|
printf("OK\n");
|
|
|
|
return 0;
|
|
}
|