mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-18 16:18:31 +01:00
442 lines
18 KiB
Python
Executable File
442 lines
18 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
from __future__ import annotations
|
|
|
|
import argparse
|
|
import os
|
|
import struct
|
|
import sys
|
|
from enum import IntEnum
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
|
|
if 'NO_LOCAL_GGUF' not in os.environ:
|
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
|
import gguf
|
|
|
|
|
|
class GGMLFormat(IntEnum):
|
|
GGML = 0
|
|
GGMF = 1
|
|
GGJT = 2
|
|
|
|
|
|
class GGMLFType(IntEnum):
|
|
ALL_F32 = 0
|
|
MOSTLY_F16 = 1
|
|
MOSTLY_Q4_0 = 2
|
|
MOSTLY_Q4_1 = 3
|
|
MOSTLY_Q4_1_SOME_F16 = 4
|
|
MOSTLY_Q8_0 = 7
|
|
MOSTLY_Q5_0 = 8
|
|
MOSTLY_Q5_1 = 9
|
|
MOSTLY_Q2_K = 10
|
|
MOSTLY_Q3_K_S = 11
|
|
MOSTLY_Q3_K_M = 12
|
|
MOSTLY_Q3_K_L = 13
|
|
MOSTLY_Q4_K_S = 14
|
|
MOSTLY_Q4_K_M = 15
|
|
MOSTLY_Q5_K_S = 16
|
|
MOSTLY_Q5_K_M = 17
|
|
MOSTLY_Q6_K = 18
|
|
|
|
|
|
class Hyperparameters:
|
|
def __init__(self):
|
|
self.n_vocab = self.n_embd = self.n_mult = self.n_head = 0
|
|
self.n_layer = self.n_rot = self.n_ff = 0
|
|
self.ftype = GGMLFType.ALL_F32
|
|
|
|
def set_n_ff(self, model):
|
|
ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight')
|
|
assert ff_tensor_idx is not None, 'Missing layer 0 FF tensor'
|
|
ff_tensor = model.tensors[ff_tensor_idx]
|
|
self.n_ff = ff_tensor.dims[1]
|
|
|
|
def load(self, data, offset):
|
|
(
|
|
self.n_vocab,
|
|
self.n_embd,
|
|
self.n_mult,
|
|
self.n_head,
|
|
self.n_layer,
|
|
self.n_rot,
|
|
ftype,
|
|
) = struct.unpack('<7I', data[offset:offset + (4 * 7)])
|
|
try:
|
|
self.ftype = GGMLFType(ftype)
|
|
except ValueError:
|
|
raise ValueError(f'Invalid ftype {ftype}')
|
|
return 4 * 7
|
|
|
|
def __str__(self):
|
|
return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype.name}>'
|
|
|
|
|
|
class Vocab:
|
|
def __init__(self, load_scores = True):
|
|
self.items = []
|
|
self.load_scores = load_scores
|
|
|
|
def load(self, data, offset, n_vocab):
|
|
orig_offset = offset
|
|
for _ in range(n_vocab):
|
|
itemlen = struct.unpack('<I', data[offset:offset + 4])[0]
|
|
assert itemlen < 4096, 'Absurd vocab item length'
|
|
offset += 4
|
|
item_text = bytes(data[offset:offset + itemlen])
|
|
offset += itemlen
|
|
if self.load_scores:
|
|
item_score = struct.unpack('<f', data[offset:offset + 4])[0]
|
|
offset += 4
|
|
else:
|
|
item_score = 0.0
|
|
self.items.append((item_text, item_score))
|
|
return offset - orig_offset
|
|
|
|
|
|
class Tensor:
|
|
def __init__(self, use_padding = True):
|
|
self.name = None
|
|
self.dims: tuple[int, ...] = ()
|
|
self.dtype = None
|
|
self.start_offset = 0
|
|
self.len_bytes = np.int64(0)
|
|
self.use_padding = use_padding
|
|
|
|
def load(self, data, offset):
|
|
orig_offset = offset
|
|
(n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12])
|
|
assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}'
|
|
assert name_len < 4096, 'Absurd tensor name length'
|
|
quant = gguf.GGML_QUANT_SIZES.get(dtype)
|
|
assert quant is not None, 'Unknown tensor type'
|
|
(blksize, tysize) = quant
|
|
offset += 12
|
|
self.dtype= dtype
|
|
self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)])
|
|
offset += 4 * n_dims
|
|
self.name = bytes(data[offset:offset + name_len])
|
|
offset += name_len
|
|
pad = ((offset + 31) & ~31) - offset if self.use_padding else 0
|
|
offset += pad
|
|
n_elems = np.prod(self.dims)
|
|
n_bytes = np.int64(np.int64(n_elems) * np.int64(tysize)) // np.int64(blksize)
|
|
self.start_offset = offset
|
|
self.len_bytes = n_bytes
|
|
offset += n_bytes
|
|
# print(n_dims, name_len, dtype, self.dims, self.name, pad)
|
|
return offset - orig_offset
|
|
|
|
|
|
class GGMLModel:
|
|
def __init__(self):
|
|
self.hyperparameters = None
|
|
self.vocab = None
|
|
self.tensor_map = {}
|
|
self.tensors = []
|
|
|
|
def validate_header(self, data, offset):
|
|
magic = bytes(data[offset:offset + 4])
|
|
if magic == b'GGUF':
|
|
raise ValueError('File is already in GGUF format.')
|
|
if magic == b'lmgg':
|
|
self.file_format = GGMLFormat.GGML
|
|
self.format_version = 1
|
|
return 4
|
|
version = struct.unpack('<I', data[offset + 4:offset + 8])[0]
|
|
if magic == b'fmgg':
|
|
if version != 1:
|
|
raise ValueError(f'Cannot handle unexpected GGMF file version {version}')
|
|
self.file_format = GGMLFormat.GGMF
|
|
self.format_version = version
|
|
return 8
|
|
if magic == b'tjgg':
|
|
if version < 1 or version > 3:
|
|
raise ValueError(f'Cannot handle unexpected GGJT file version {version}')
|
|
self.file_format = GGMLFormat.GGJT
|
|
self.format_version = version
|
|
return 8
|
|
raise ValueError(f"Unexpected file magic {magic!r}! This doesn't look like a GGML format file.")
|
|
|
|
def validate_conversion(self, ftype):
|
|
err = ''
|
|
if (self.file_format < GGMLFormat.GGJT or self.format_version < 2):
|
|
if ftype not in (GGMLFType.ALL_F32, GGMLFType.MOSTLY_F16):
|
|
err = 'Quantizations changed in GGJTv2. Can only convert unquantized GGML files older than GGJTv2.'
|
|
elif (self.file_format == GGMLFormat.GGJT and self.format_version == 2):
|
|
if ftype in (GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1,
|
|
GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0):
|
|
err = 'Q4 and Q8 quantizations changed in GGJTv3.'
|
|
if len(err) > 0:
|
|
raise ValueError(f'{err} Sorry, your {self.file_format.name}v{self.format_version} file of type {ftype.name} is not eligible for conversion.')
|
|
|
|
def load(self, data, offset):
|
|
offset += self.validate_header(data, offset)
|
|
hp = Hyperparameters()
|
|
offset += hp.load(data, offset)
|
|
print(f'* File format: {self.file_format.name}v{self.format_version} with ftype {hp.ftype.name}')
|
|
self.validate_conversion(hp.ftype)
|
|
vocab = Vocab(load_scores = self.file_format > GGMLFormat.GGML)
|
|
offset += vocab.load(data, offset, hp.n_vocab)
|
|
tensors: list[Tensor] = []
|
|
tensor_map = {}
|
|
while offset < len(data):
|
|
tensor = Tensor(use_padding = self.file_format > GGMLFormat.GGMF)
|
|
offset += tensor.load(data, offset)
|
|
tensor_map[tensor.name] = len(tensors)
|
|
tensors.append(tensor)
|
|
self.hyperparameters = hp
|
|
self.vocab = vocab
|
|
self.tensors = tensors
|
|
self.tensor_map = tensor_map
|
|
hp.set_n_ff(self)
|
|
return offset
|
|
|
|
|
|
class GGMLToGGUF:
|
|
def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None):
|
|
hp = ggml_model.hyperparameters
|
|
self.model = ggml_model
|
|
self.data = data
|
|
self.cfg = cfg
|
|
self.params_override = params_override
|
|
self.vocab_override = vocab_override
|
|
self.special_vocab = special_vocab
|
|
if params_override is not None:
|
|
n_kv_head = params_override.n_head_kv
|
|
else:
|
|
if cfg.gqa == 1:
|
|
n_kv_head = hp.n_head
|
|
else:
|
|
gqa = float(cfg.gqa)
|
|
n_kv_head = None
|
|
for x in range(1, 256):
|
|
if float(hp.n_head) / float(x) == gqa:
|
|
n_kv_head = x
|
|
assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param"
|
|
print(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}')
|
|
self.n_kv_head = n_kv_head
|
|
self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer)
|
|
|
|
def save(self):
|
|
print('* Preparing to save GGUF file')
|
|
gguf_writer = gguf.GGUFWriter(
|
|
self.cfg.output,
|
|
gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA],
|
|
use_temp_file = False)
|
|
self.add_params(gguf_writer)
|
|
self.add_vocab(gguf_writer)
|
|
if self.special_vocab is not None:
|
|
self.special_vocab.add_to_gguf(gguf_writer)
|
|
self.add_tensors(gguf_writer)
|
|
print(" gguf: write header")
|
|
gguf_writer.write_header_to_file()
|
|
print(" gguf: write metadata")
|
|
gguf_writer.write_kv_data_to_file()
|
|
print(" gguf: write tensors")
|
|
gguf_writer.write_tensors_to_file()
|
|
gguf_writer.close()
|
|
|
|
def add_params(self, gguf_writer):
|
|
hp = self.model.hyperparameters
|
|
cfg = self.cfg
|
|
if cfg.desc is not None:
|
|
desc = cfg.desc
|
|
else:
|
|
desc = f'converted from legacy {self.model.file_format.name}v{self.model.format_version} {hp.ftype.name} format'
|
|
try:
|
|
# Filenames aren't necessarily valid UTF8.
|
|
name = cfg.name if cfg.name is not None else cfg.input.name
|
|
except UnicodeDecodeError:
|
|
name = None
|
|
print('* Adding model parameters and KV items')
|
|
if name is not None:
|
|
gguf_writer.add_name(name)
|
|
gguf_writer.add_description(desc)
|
|
gguf_writer.add_file_type(int(hp.ftype))
|
|
if self.params_override is not None:
|
|
po = self.params_override
|
|
assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch'
|
|
assert po.n_layer == hp.n_layer, 'Model hyperparams mismatch'
|
|
assert po.n_head == hp.n_head, 'Model hyperparams mismatch'
|
|
gguf_writer.add_context_length (po.n_ctx)
|
|
gguf_writer.add_embedding_length (po.n_embd)
|
|
gguf_writer.add_block_count (po.n_layer)
|
|
gguf_writer.add_feed_forward_length (po.n_ff)
|
|
gguf_writer.add_rope_dimension_count(po.n_embd // po.n_head)
|
|
gguf_writer.add_head_count (po.n_head)
|
|
gguf_writer.add_head_count_kv (po.n_head_kv)
|
|
gguf_writer.add_layer_norm_rms_eps (po.f_norm_eps)
|
|
return
|
|
gguf_writer.add_context_length(cfg.context_length)
|
|
gguf_writer.add_embedding_length(hp.n_embd)
|
|
gguf_writer.add_block_count(hp.n_layer)
|
|
gguf_writer.add_feed_forward_length(hp.n_ff)
|
|
gguf_writer.add_rope_dimension_count(hp.n_embd // hp.n_head)
|
|
gguf_writer.add_head_count(hp.n_head)
|
|
gguf_writer.add_head_count_kv(self.n_kv_head)
|
|
gguf_writer.add_layer_norm_rms_eps(float(cfg.eps))
|
|
|
|
def add_vocab(self, gguf_writer):
|
|
hp = self.model.hyperparameters
|
|
gguf_writer.add_tokenizer_model('llama')
|
|
tokens = []
|
|
scores = []
|
|
toktypes = []
|
|
if self.vocab_override is not None:
|
|
vo = self.vocab_override
|
|
print('* Adding vocab item(s)')
|
|
for (idx, (vbytes, score, ttype)) in enumerate(vo.all_tokens()):
|
|
tokens.append(vbytes)
|
|
scores.append(score)
|
|
toktypes.append(ttype)
|
|
assert len(tokens) == hp.n_vocab, \
|
|
f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}'
|
|
gguf_writer.add_token_list(tokens)
|
|
gguf_writer.add_token_scores(scores)
|
|
if len(toktypes) > 0:
|
|
gguf_writer.add_token_types(toktypes)
|
|
return
|
|
print(f'* Adding {hp.n_vocab} vocab item(s)')
|
|
assert len(self.model.vocab.items) >= 3, 'Cannot handle unexpectedly short model vocab'
|
|
for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items):
|
|
tt = 1 # Normal
|
|
# Special handling for UNK, BOS, EOS tokens.
|
|
if tokid <= 2:
|
|
if tokid == 0:
|
|
vbytes = b'<unk>'
|
|
tt = 2
|
|
elif tokid == 1:
|
|
vbytes = b'<s>'
|
|
tt = 3
|
|
else:
|
|
vbytes = b'</s>'
|
|
tt = 3
|
|
elif len(vbytes) == 0:
|
|
tt = 3 # Control
|
|
elif tokid >= 3 and tokid <= 258 and len(vbytes) == 1:
|
|
vbytes = bytes(f'<0x{vbytes[0]:02X}>', encoding = 'UTF-8')
|
|
tt = 6 # Byte
|
|
else:
|
|
vbytes = vbytes.replace(b' ', b'\xe2\x96\x81')
|
|
toktypes.append(tt)
|
|
tokens.append(vbytes)
|
|
scores.append(vscore)
|
|
gguf_writer.add_token_list(tokens)
|
|
gguf_writer.add_token_scores(scores)
|
|
gguf_writer.add_token_types(toktypes)
|
|
gguf_writer.add_unk_token_id(0)
|
|
gguf_writer.add_bos_token_id(1)
|
|
gguf_writer.add_eos_token_id(2)
|
|
|
|
def add_tensors(self, gguf_writer):
|
|
tensor_map = self.name_map
|
|
data = self.data
|
|
print(f'* Adding {len(self.model.tensors)} tensor(s)')
|
|
for tensor in self.model.tensors:
|
|
name = str(tensor.name, 'UTF-8')
|
|
mapped_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
|
assert mapped_name is not None, f'Bad name {name}'
|
|
tempdims = list(tensor.dims[:])
|
|
if len(tempdims) > 1:
|
|
temp = tempdims[1]
|
|
tempdims[1] = tempdims[0]
|
|
tempdims[0] = temp
|
|
# print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}')
|
|
gguf_writer.add_tensor(
|
|
mapped_name,
|
|
data[tensor.start_offset:tensor.start_offset + tensor.len_bytes],
|
|
raw_shape = tempdims,
|
|
raw_dtype = tensor.dtype)
|
|
|
|
|
|
def handle_metadata(cfg, hp):
|
|
import convert
|
|
assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory'
|
|
hf_config_path = cfg.model_metadata_dir / "config.json"
|
|
orig_config_path = cfg.model_metadata_dir / "params.json"
|
|
# We pass a fake model here. "original" mode will check the shapes of some
|
|
# tensors if information is missing in the .json file: other than that, the
|
|
# model data isn't used so this should be safe (at least for now).
|
|
fakemodel = {
|
|
'tok_embeddings.weight': convert.LazyTensor.__new__(convert.LazyTensor),
|
|
'layers.0.feed_forward.w1.weight': convert.LazyTensor.__new__(convert.LazyTensor),
|
|
}
|
|
fakemodel['tok_embeddings.weight'].shape = [hp.n_vocab]
|
|
fakemodel['layers.0.feed_forward.w1.weight'].shape = [hp.n_ff]
|
|
if hf_config_path.exists():
|
|
params = convert.Params.loadHFTransformerJson(fakemodel, hf_config_path)
|
|
elif orig_config_path.exists():
|
|
params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path)
|
|
else:
|
|
raise ValueError('Unable to load metadata')
|
|
vocab_path = Path(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir)
|
|
vocab_factory = convert.VocabFactory(vocab_path)
|
|
vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype.split(","), cfg.model_metadata_dir)
|
|
convert.check_vocab_size(params, vocab)
|
|
return params, vocab, special_vocab
|
|
|
|
|
|
def handle_args():
|
|
parser = argparse.ArgumentParser(description = 'Convert GGML models to GGUF')
|
|
parser.add_argument('--input', '-i', type = Path, required = True,
|
|
help = 'Input GGMLv3 filename')
|
|
parser.add_argument('--output', '-o', type = Path, required = True,
|
|
help ='Output GGUF filename')
|
|
parser.add_argument('--name',
|
|
help = 'Set model name')
|
|
parser.add_argument('--desc',
|
|
help = 'Set model description')
|
|
parser.add_argument('--gqa', type = int, default = 1,
|
|
help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
|
|
parser.add_argument('--eps', default = '5.0e-06',
|
|
help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
|
|
parser.add_argument('--context-length', '-c', type=int, default = 2048,
|
|
help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
|
|
parser.add_argument('--model-metadata-dir', '-m', type = Path,
|
|
help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
|
|
parser.add_argument("--vocab-dir", type=Path,
|
|
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
|
|
parser.add_argument("--vocabtype", default="spm,hfft",
|
|
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm,hfft)")
|
|
return parser.parse_args()
|
|
|
|
|
|
def main():
|
|
cfg = handle_args()
|
|
print(f'* Using config: {cfg}')
|
|
print('\n=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===\n')
|
|
if cfg.model_metadata_dir is None and (cfg.gqa == 1 or cfg.eps == '5.0e-06'):
|
|
print('- Note: If converting LLaMA2, specifying "--eps 1e-5" is required. 70B models also need "--gqa 8".')
|
|
data = np.memmap(cfg.input, mode = 'r')
|
|
model = GGMLModel()
|
|
print('* Scanning GGML input file')
|
|
offset = model.load(data, 0) # noqa
|
|
print(f'* GGML model hyperparameters: {model.hyperparameters}')
|
|
vocab_override = None
|
|
params_override = None
|
|
special_vocab = None
|
|
if cfg.model_metadata_dir is not None:
|
|
(params_override, vocab_override, special_vocab) = handle_metadata(cfg, model.hyperparameters)
|
|
print('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.')
|
|
print(f'* Overriding params: {params_override}')
|
|
print(f'* Overriding vocab: {vocab_override}')
|
|
print(f'* Special vocab: {special_vocab}')
|
|
else:
|
|
print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
|
|
if model.file_format == GGMLFormat.GGML:
|
|
print('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!')
|
|
converter = GGMLToGGUF(
|
|
model, data, cfg,
|
|
params_override = params_override,
|
|
vocab_override = vocab_override,
|
|
special_vocab = special_vocab
|
|
)
|
|
converter.save()
|
|
print(f'* Successful completion. Output saved to: {cfg.output}')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|