mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-07 11:23:56 +01:00
554c247caf
ggml-ci
377 lines
14 KiB
Python
Executable File
377 lines
14 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import logging
|
|
import argparse
|
|
import heapq
|
|
import sys
|
|
import os
|
|
from glob import glob
|
|
import sqlite3
|
|
|
|
try:
|
|
import git
|
|
from tabulate import tabulate
|
|
except ImportError as e:
|
|
print("the following Python libraries are required: GitPython, tabulate.") # noqa: NP100
|
|
raise e
|
|
|
|
logger = logging.getLogger("compare-llama-bench")
|
|
|
|
# Properties by which to differentiate results per commit:
|
|
KEY_PROPERTIES = [
|
|
"cpu_info", "gpu_info", "n_gpu_layers", "cuda", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas",
|
|
"blas", "model_filename", "model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "embeddings", "n_threads",
|
|
"type_k", "type_v", "use_mmap", "no_kv_offload", "split_mode", "main_gpu", "tensor_split", "flash_attn", "n_prompt", "n_gen"
|
|
]
|
|
|
|
# Properties that are boolean and are converted to Yes/No for the table:
|
|
BOOL_PROPERTIES = ["cuda", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas", "embeddings", "use_mmap", "no_kv_offload", "flash_attn"]
|
|
|
|
# Header names for the table:
|
|
PRETTY_NAMES = {
|
|
"cuda": "CUDA", "vulkan": "Vulkan", "kompute": "Kompute", "metal": "Metal", "sycl": "SYCL", "rpc": "RPC",
|
|
"gpu_blas": "GPU BLAS", "blas": "BLAS", "cpu_info": "CPU", "gpu_info": "GPU", "model_filename": "File", "model_type": "Model",
|
|
"model_size": "Model Size [GiB]", "model_n_params": "Num. of Par.", "n_batch": "Batch size", "n_ubatch": "Microbatch size",
|
|
"n_threads": "Threads", "type_k": "K type", "type_v": "V type", "n_gpu_layers": "GPU layers", "split_mode": "Split mode",
|
|
"main_gpu": "Main GPU", "no_kv_offload": "NKVO", "flash_attn": "FlashAttention", "tensor_split": "Tensor split",
|
|
"use_mmap": "Use mmap", "embeddings": "Embeddings",
|
|
}
|
|
|
|
DEFAULT_SHOW = ["model_type"] # Always show these properties by default.
|
|
DEFAULT_HIDE = ["model_filename"] # Always hide these properties by default.
|
|
GPU_NAME_STRIP = ["NVIDIA GeForce ", "Tesla ", "AMD Radeon "] # Strip prefixes for smaller tables.
|
|
MODEL_SUFFIX_REPLACE = {" - Small": "_S", " - Medium": "_M", " - Large": "_L"}
|
|
|
|
DESCRIPTION = """Creates tables from llama-bench data written to an SQLite database. Example usage (Linux):
|
|
|
|
$ git checkout master
|
|
$ make clean && make llama-bench
|
|
$ ./llama-bench -o sql | sqlite3 llama-bench.sqlite
|
|
$ git checkout some_branch
|
|
$ make clean && make llama-bench
|
|
$ ./llama-bench -o sql | sqlite3 llama-bench.sqlite
|
|
$ ./scripts/compare-llama-bench.py
|
|
|
|
Performance numbers from multiple runs per commit are averaged WITHOUT being weighted by the --repetitions parameter of llama-bench.
|
|
"""
|
|
|
|
parser = argparse.ArgumentParser(
|
|
description=DESCRIPTION, formatter_class=argparse.RawDescriptionHelpFormatter)
|
|
help_b = (
|
|
"The baseline commit to compare performance to. "
|
|
"Accepts either a branch name, tag name, or commit hash. "
|
|
"Defaults to latest master commit with data."
|
|
)
|
|
parser.add_argument("-b", "--baseline", help=help_b)
|
|
help_c = (
|
|
"The commit whose performance is to be compared to the baseline. "
|
|
"Accepts either a branch name, tag name, or commit hash. "
|
|
"Defaults to the non-master commit for which llama-bench was run most recently."
|
|
)
|
|
parser.add_argument("-c", "--compare", help=help_c)
|
|
help_i = (
|
|
"Input SQLite file for comparing commits. "
|
|
"Defaults to 'llama-bench.sqlite' in the current working directory. "
|
|
"If no such file is found and there is exactly one .sqlite file in the current directory, "
|
|
"that file is instead used as input."
|
|
)
|
|
parser.add_argument("-i", "--input", help=help_i)
|
|
help_o = (
|
|
"Output format for the table. "
|
|
"Defaults to 'pipe' (GitHub compatible). "
|
|
"Also supports e.g. 'latex' or 'mediawiki'. "
|
|
"See tabulate documentation for full list."
|
|
)
|
|
parser.add_argument("-o", "--output", help=help_o, default="pipe")
|
|
help_s = (
|
|
"Columns to add to the table. "
|
|
"Accepts a comma-separated list of values. "
|
|
f"Legal values: {', '.join(KEY_PROPERTIES[:-2])}. "
|
|
"Defaults to model name (model_type) and CPU and/or GPU name (cpu_info, gpu_info) "
|
|
"plus any column where not all data points are the same. "
|
|
"If the columns are manually specified, then the results for each unique combination of the "
|
|
"specified values are averaged WITHOUT weighing by the --repetitions parameter of llama-bench."
|
|
)
|
|
parser.add_argument("-s", "--show", help=help_s)
|
|
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
|
|
|
known_args, unknown_args = parser.parse_known_args()
|
|
|
|
logging.basicConfig(level=logging.DEBUG if known_args.verbose else logging.INFO)
|
|
|
|
if unknown_args:
|
|
logger.error(f"Received unknown args: {unknown_args}.\n")
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
|
|
input_file = known_args.input
|
|
if input_file is None and os.path.exists("./llama-bench.sqlite"):
|
|
input_file = "llama-bench.sqlite"
|
|
if input_file is None:
|
|
sqlite_files = glob("*.sqlite")
|
|
if len(sqlite_files) == 1:
|
|
input_file = sqlite_files[0]
|
|
|
|
if input_file is None:
|
|
logger.error("Cannot find a suitable input file, please provide one.\n")
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
|
|
connection = sqlite3.connect(input_file)
|
|
cursor = connection.cursor()
|
|
builds = cursor.execute("SELECT DISTINCT build_commit FROM test;").fetchall()
|
|
|
|
try:
|
|
repo = git.Repo(".", search_parent_directories=True)
|
|
except git.exc.InvalidGitRepositoryError:
|
|
repo = None
|
|
|
|
|
|
def find_parent_in_data(commit):
|
|
"""Helper function to find the most recent parent measured in number of commits for which there is data."""
|
|
heap = [(0, commit)]
|
|
seen_hexsha8 = set()
|
|
while heap:
|
|
depth, current_commit = heapq.heappop(heap)
|
|
current_hexsha8 = commit.hexsha[:8]
|
|
if (current_hexsha8,) in builds:
|
|
return current_hexsha8
|
|
for parent in commit.parents:
|
|
parent_hexsha8 = parent.hexsha[:8]
|
|
if parent_hexsha8 not in seen_hexsha8:
|
|
seen_hexsha8.add(parent_hexsha8)
|
|
heapq.heappush(heap, (depth + 1, parent))
|
|
return None
|
|
|
|
|
|
def get_all_parent_hexsha8s(commit):
|
|
"""Helper function to recursively get hexsha8 values for all parents of a commit."""
|
|
unvisited = [commit]
|
|
visited = []
|
|
|
|
while unvisited:
|
|
current_commit = unvisited.pop(0)
|
|
visited.append(current_commit.hexsha[:8])
|
|
for parent in current_commit.parents:
|
|
if parent.hexsha[:8] not in visited:
|
|
unvisited.append(parent)
|
|
|
|
return visited
|
|
|
|
|
|
def get_commit_name(hexsha8):
|
|
"""Helper function to find a human-readable name for a commit if possible."""
|
|
if repo is None:
|
|
return hexsha8
|
|
for h in repo.heads:
|
|
if h.commit.hexsha[:8] == hexsha8:
|
|
return h.name
|
|
for t in repo.tags:
|
|
if t.commit.hexsha[:8] == hexsha8:
|
|
return t.name
|
|
return hexsha8
|
|
|
|
|
|
def get_commit_hexsha8(name):
|
|
"""Helper function to search for a commit given a human-readable name."""
|
|
if repo is None:
|
|
return None
|
|
for h in repo.heads:
|
|
if h.name == name:
|
|
return h.commit.hexsha[:8]
|
|
for t in repo.tags:
|
|
if t.name == name:
|
|
return t.commit.hexsha[:8]
|
|
for c in repo.iter_commits("--all"):
|
|
if c.hexsha[:8] == name[:8]:
|
|
return c.hexsha[:8]
|
|
return None
|
|
|
|
|
|
hexsha8_baseline = name_baseline = None
|
|
|
|
# If the user specified a baseline, try to find a commit for it:
|
|
if known_args.baseline is not None:
|
|
if (known_args.baseline,) in builds:
|
|
hexsha8_baseline = known_args.baseline
|
|
if hexsha8_baseline is None:
|
|
hexsha8_baseline = get_commit_hexsha8(known_args.baseline)
|
|
name_baseline = known_args.baseline
|
|
if hexsha8_baseline is None:
|
|
logger.error(f"cannot find data for baseline={known_args.baseline}.")
|
|
sys.exit(1)
|
|
# Otherwise, search for the most recent parent of master for which there is data:
|
|
elif repo is not None:
|
|
hexsha8_baseline = find_parent_in_data(repo.heads.master.commit)
|
|
|
|
if hexsha8_baseline is None:
|
|
logger.error("No baseline was provided and did not find data for any master branch commits.\n")
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
else:
|
|
logger.error("No baseline was provided and the current working directory "
|
|
"is not part of a git repository from which a baseline could be inferred.\n")
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
|
|
|
|
name_baseline = get_commit_name(hexsha8_baseline)
|
|
|
|
hexsha8_compare = name_compare = None
|
|
|
|
# If the user has specified a compare value, try to find a corresponding commit:
|
|
if known_args.compare is not None:
|
|
if (known_args.compare,) in builds:
|
|
hexsha8_compare = known_args.compare
|
|
if hexsha8_compare is None:
|
|
hexsha8_compare = get_commit_hexsha8(known_args.compare)
|
|
name_compare = known_args.compare
|
|
if hexsha8_compare is None:
|
|
logger.error(f"cannot find data for compare={known_args.compare}.")
|
|
sys.exit(1)
|
|
# Otherwise, search for the commit for llama-bench was most recently run
|
|
# and that is not a parent of master:
|
|
elif repo is not None:
|
|
hexsha8s_master = get_all_parent_hexsha8s(repo.heads.master.commit)
|
|
builds_timestamp = cursor.execute(
|
|
"SELECT build_commit, test_time FROM test ORDER BY test_time;").fetchall()
|
|
for (hexsha8, _) in reversed(builds_timestamp):
|
|
if hexsha8 not in hexsha8s_master:
|
|
hexsha8_compare = hexsha8
|
|
break
|
|
|
|
if hexsha8_compare is None:
|
|
logger.error("No compare target was provided and did not find data for any non-master commits.\n")
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
else:
|
|
logger.error("No compare target was provided and the current working directory "
|
|
"is not part of a git repository from which a compare target could be inferred.\n")
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
|
|
name_compare = get_commit_name(hexsha8_compare)
|
|
|
|
|
|
def get_rows(properties):
|
|
"""
|
|
Helper function that gets table rows for some list of properties.
|
|
Rows are created by combining those where all provided properties are equal.
|
|
The resulting rows are then grouped by the provided properties and the t/s values are averaged.
|
|
The returned rows are unique in terms of property combinations.
|
|
"""
|
|
select_string = ", ".join(
|
|
[f"tb.{p}" for p in properties] + ["tb.n_prompt", "tb.n_gen", "AVG(tb.avg_ts)", "AVG(tc.avg_ts)"])
|
|
equal_string = " AND ".join(
|
|
[f"tb.{p} = tc.{p}" for p in KEY_PROPERTIES] + [
|
|
f"tb.build_commit = '{hexsha8_baseline}'", f"tc.build_commit = '{hexsha8_compare}'"]
|
|
)
|
|
group_order_string = ", ".join([f"tb.{p}" for p in properties] + ["tb.n_gen", "tb.n_prompt"])
|
|
query = (f"SELECT {select_string} FROM test tb JOIN test tc ON {equal_string} "
|
|
f"GROUP BY {group_order_string} ORDER BY {group_order_string};")
|
|
return cursor.execute(query).fetchall()
|
|
|
|
|
|
# If the user provided columns to group the results by, use them:
|
|
if known_args.show is not None:
|
|
show = known_args.show.split(",")
|
|
unknown_cols = []
|
|
for prop in show:
|
|
if prop not in KEY_PROPERTIES[:-2]: # Last two values are n_prompt, n_gen.
|
|
unknown_cols.append(prop)
|
|
if unknown_cols:
|
|
logger.error(f"Unknown values for --show: {', '.join(unknown_cols)}")
|
|
parser.print_usage()
|
|
sys.exit(1)
|
|
rows_show = get_rows(show)
|
|
# Otherwise, select those columns where the values are not all the same:
|
|
else:
|
|
rows_full = get_rows(KEY_PROPERTIES)
|
|
properties_different = []
|
|
for i, kp_i in enumerate(KEY_PROPERTIES):
|
|
if kp_i in DEFAULT_SHOW or kp_i == "n_prompt" or kp_i == "n_gen":
|
|
continue
|
|
for row_full in rows_full:
|
|
if row_full[i] != rows_full[0][i]:
|
|
properties_different.append(kp_i)
|
|
break
|
|
|
|
show = []
|
|
# Show CPU and/or GPU by default even if the hardware for all results is the same:
|
|
if "gpu_blas" not in properties_different and "n_gpu_layers" not in properties_different:
|
|
gpu_blas = bool(rows_full[0][KEY_PROPERTIES.index("gpu_blas")])
|
|
ngl = int(rows_full[0][KEY_PROPERTIES.index("n_gpu_layers")])
|
|
|
|
if not gpu_blas or ngl != 99 and "cpu_info" not in properties_different:
|
|
show.append("cpu_info")
|
|
if gpu_blas and "gpu_info" not in properties_different:
|
|
show.append("gpu_info")
|
|
|
|
show += properties_different
|
|
|
|
index_default = 0
|
|
for prop in ["cpu_info", "gpu_info", "n_gpu_layers", "main_gpu"]:
|
|
if prop in show:
|
|
index_default += 1
|
|
show = show[:index_default] + DEFAULT_SHOW + show[index_default:]
|
|
for prop in DEFAULT_HIDE:
|
|
try:
|
|
show.remove(prop)
|
|
except ValueError:
|
|
pass
|
|
rows_show = get_rows(show)
|
|
|
|
table = []
|
|
for row in rows_show:
|
|
n_prompt = int(row[-4])
|
|
n_gen = int(row[-3])
|
|
if n_prompt != 0 and n_gen == 0:
|
|
test_name = f"pp{n_prompt}"
|
|
elif n_prompt == 0 and n_gen != 0:
|
|
test_name = f"tg{n_gen}"
|
|
else:
|
|
test_name = f"pp{n_prompt}+tg{n_gen}"
|
|
# Regular columns test name avg t/s values Speedup
|
|
# VVVVVVVVVVVVV VVVVVVVVV VVVVVVVVVVVVVV VVVVVVV
|
|
table.append(list(row[:-4]) + [test_name] + list(row[-2:]) + [float(row[-1]) / float(row[-2])])
|
|
|
|
# Some a-posteriori fixes to make the table contents prettier:
|
|
for bool_property in BOOL_PROPERTIES:
|
|
if bool_property in show:
|
|
ip = show.index(bool_property)
|
|
for row_table in table:
|
|
row_table[ip] = "Yes" if int(row_table[ip]) == 1 else "No"
|
|
|
|
if "model_type" in show:
|
|
ip = show.index("model_type")
|
|
for (old, new) in MODEL_SUFFIX_REPLACE.items():
|
|
for row_table in table:
|
|
row_table[ip] = row_table[ip].replace(old, new)
|
|
|
|
if "model_size" in show:
|
|
ip = show.index("model_size")
|
|
for row_table in table:
|
|
row_table[ip] = float(row_table[ip]) / 1024 ** 3
|
|
|
|
if "gpu_info" in show:
|
|
ip = show.index("gpu_info")
|
|
for row_table in table:
|
|
for gns in GPU_NAME_STRIP:
|
|
row_table[ip] = row_table[ip].replace(gns, "")
|
|
|
|
gpu_names = row_table[ip].split("/")
|
|
num_gpus = len(gpu_names)
|
|
all_names_the_same = len(set(gpu_names)) == 1
|
|
if len(gpu_names) >= 2 and all_names_the_same:
|
|
row_table[ip] = f"{num_gpus}x {gpu_names[0]}"
|
|
|
|
headers = [PRETTY_NAMES[p] for p in show]
|
|
headers += ["Test", f"t/s {name_baseline}", f"t/s {name_compare}", "Speedup"]
|
|
|
|
print(tabulate( # noqa: NP100
|
|
table,
|
|
headers=headers,
|
|
floatfmt=".2f",
|
|
tablefmt=known_args.output
|
|
))
|