mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-04 01:57:53 +01:00
34b0a08207
* gguf-py: Refactor and add file reading support * Replay changes from #3871 Credit to @cebtenzzre for that pull * Various type annotation fixes. * sort imports with isort (again) * Fix missing return statement in add_tensor * style cleanup with flake8 * fix NamedTuple and Enum usage * Fix an issue with state init in GGUFReader Move examples to an examples/ directory Clean up examples Add an example of modifying keys in a GGUF file Update documentation with info on examples Try to support people importing gguf/gguf.py directly * Damagage is not a word. * Clean up gguf-py/examples/modify_gguf.py whitespace Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update gguf-py/examples/modify_gguf.py formatting Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update gguf-py/gguf/gguf_reader.py type hint Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Make examples executable, formatting changes * Add more information to GGUFReader and examples comments * Include a gguf Python package version bump * Add convert-gguf-endian.py script * cleanup * gguf-py : bump minor version * Reorganize scripts * Make GGUFReader endian detection less arbitrary * Add JSON dumping support to gguf-dump.py Which I kind of regret now * A few for gguf-dump.py cleanups * Murder accidental tuple in gguf-py/scripts/gguf-dump.py Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * cleanup * constants : remove unneeded type annotations * fix python 3.8 compat * Set up gguf- scripts in pyproject.toml * And include scripts/__init__.py, derp * convert.py: We can't currently support Q8_0 on big endian. * gguf-py: SpecialVocab: Always try available sources for special token ids gguf-py: SpecialVocab: Try to load merges from merges.txt if not in tokenizer.json gguf-py: SpecialVocab: Add 'add_bos_token' type bools to GGUF metadata u * cleanup * Promote add_X_token to GGUF metadata for BOS and EOS --------- Co-authored-by: Jared Van Bortel <jared@nomic.ai> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
265 lines
10 KiB
Python
265 lines
10 KiB
Python
#
|
|
# GGUF file reading/modification support. For API usage information,
|
|
# please see the files scripts/ for some fairly simple examples.
|
|
#
|
|
from __future__ import annotations
|
|
|
|
import os
|
|
from collections import OrderedDict
|
|
from typing import Any, Literal, NamedTuple, TypeVar, Union
|
|
|
|
import numpy as np
|
|
import numpy.typing as npt
|
|
|
|
if __name__ == "__main__":
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
# Allow running file in package as a script.
|
|
sys.path.insert(0, str(Path(__file__).parent.parent))
|
|
|
|
from gguf.constants import (
|
|
GGML_QUANT_SIZES,
|
|
GGUF_DEFAULT_ALIGNMENT,
|
|
GGUF_MAGIC,
|
|
GGUF_VERSION,
|
|
GGMLQuantizationType,
|
|
GGUFValueType,
|
|
)
|
|
|
|
|
|
READER_SUPPORTED_VERSIONS = [2, GGUF_VERSION]
|
|
|
|
|
|
class ReaderField(NamedTuple):
|
|
# Offset to start of this field.
|
|
offset: int
|
|
|
|
# Name of the field (not necessarily from file data).
|
|
name: str
|
|
|
|
# Data parts. Some types have multiple components, such as strings
|
|
# that consist of a length followed by the string data.
|
|
parts: list[npt.NDArray[Any]] = []
|
|
|
|
# Indexes into parts that we can call the actual data. For example
|
|
# an array of strings will be populated with indexes to the actual
|
|
# string data.
|
|
data: list[int] = [-1]
|
|
|
|
types: list[GGUFValueType] = []
|
|
|
|
|
|
class ReaderTensor(NamedTuple):
|
|
name: str
|
|
tensor_type: GGMLQuantizationType
|
|
shape: npt.NDArray[np.uint32]
|
|
n_elements: int
|
|
n_bytes: int
|
|
data_offset: int
|
|
data: npt.NDArray[Any]
|
|
field: ReaderField
|
|
|
|
|
|
class GGUFReader:
|
|
# I - same as host, S - swapped
|
|
byte_order: Literal['I' | 'S'] = 'I'
|
|
alignment: int = GGUF_DEFAULT_ALIGNMENT
|
|
|
|
# Note: Internal helper, API may change.
|
|
gguf_scalar_to_np: dict[GGUFValueType, type[np.generic]] = {
|
|
GGUFValueType.UINT8: np.uint8,
|
|
GGUFValueType.INT8: np.int8,
|
|
GGUFValueType.UINT16: np.uint16,
|
|
GGUFValueType.INT16: np.int16,
|
|
GGUFValueType.UINT32: np.uint32,
|
|
GGUFValueType.INT32: np.int32,
|
|
GGUFValueType.FLOAT32: np.float32,
|
|
GGUFValueType.UINT64: np.uint64,
|
|
GGUFValueType.INT64: np.int64,
|
|
GGUFValueType.FLOAT64: np.float64,
|
|
GGUFValueType.BOOL: np.bool_,
|
|
}
|
|
|
|
def __init__(self, path: os.PathLike[str] | str, mode: Literal['r' | 'r+' | 'c'] = 'r'):
|
|
self.data = np.memmap(path, mode = mode)
|
|
offs = 0
|
|
if self._get(offs, np.uint32, override_order = '<')[0] != GGUF_MAGIC:
|
|
raise ValueError('GGUF magic invalid')
|
|
offs += 4
|
|
temp_version = self._get(offs, np.uint32)
|
|
if temp_version[0] & 65535 == 0:
|
|
# If we get 0 here that means it's (probably) a GGUF file created for
|
|
# the opposite byte order of the machine this script is running on.
|
|
self.byte_order = 'S'
|
|
temp_version = temp_version.newbyteorder(self.byte_order)
|
|
version = temp_version[0]
|
|
if version not in READER_SUPPORTED_VERSIONS:
|
|
raise ValueError(f'Sorry, file appears to be version {version} which we cannot handle')
|
|
self.fields: OrderedDict[str, ReaderField] = OrderedDict()
|
|
self.tensors: list[ReaderTensor] = []
|
|
offs += self._push_field(ReaderField(offs, 'GGUF.version', [temp_version], [0], [GGUFValueType.UINT32]))
|
|
temp_counts = self._get(offs, np.uint64, 2)
|
|
offs += self._push_field(ReaderField(offs, 'GGUF.tensor_count', [temp_counts[:1]], [0], [GGUFValueType.UINT64]))
|
|
offs += self._push_field(ReaderField(offs, 'GGUF.kv_count', [temp_counts[1:]], [0], [GGUFValueType.UINT64]))
|
|
tensor_count, kv_count = temp_counts
|
|
offs = self._build_fields(offs, kv_count)
|
|
offs, tensors_fields = self._build_tensors_fields(offs, tensor_count)
|
|
new_align = self.fields.get('general.alignment')
|
|
if new_align is not None:
|
|
if new_align.types != [GGUFValueType.UINT64]:
|
|
raise ValueError('Bad type for general.alignment field')
|
|
self.alignment = new_align.parts[-1][0]
|
|
padding = offs % self.alignment
|
|
if padding != 0:
|
|
offs += self.alignment - padding
|
|
self._build_tensors(offs, tensors_fields)
|
|
|
|
_DT = TypeVar('_DT', bound = npt.DTypeLike)
|
|
|
|
# Fetch a key/value metadata field by key.
|
|
def get_field(self, key: str) -> Union[ReaderField, None]:
|
|
return self.fields.get(key, None)
|
|
|
|
# Fetch a tensor from the list by index.
|
|
def get_tensor(self, idx: int) -> ReaderTensor:
|
|
return self.tensors[idx]
|
|
|
|
def _get(
|
|
self, offset: int, dtype: npt.DTypeLike, count: int = 1, override_order: None | Literal['I' | 'S' | '<'] = None,
|
|
) -> npt.NDArray[Any]:
|
|
count = int(count)
|
|
itemsize = int(np.empty([], dtype = dtype).itemsize)
|
|
end_offs = offset + itemsize * count
|
|
return (
|
|
self.data[offset:end_offs]
|
|
.view(dtype = dtype)[:count]
|
|
.newbyteorder(override_order or self.byte_order)
|
|
)
|
|
|
|
def _push_field(self, field: ReaderField, skip_sum: bool = False) -> int:
|
|
if field.name in self.fields:
|
|
raise KeyError(f'Duplicate {field.name} already in list at offset {field.offset}')
|
|
self.fields[field.name] = field
|
|
return 0 if skip_sum else sum(int(part.nbytes) for part in field.parts)
|
|
|
|
def _get_str(self, offset: int) -> tuple[npt.NDArray[np.uint64], npt.NDArray[np.uint8]]:
|
|
slen = self._get(offset, np.uint64)
|
|
return slen, self._get(offset + 8, np.uint8, slen[0])
|
|
|
|
def _get_field_parts(
|
|
self, orig_offs: int, raw_type: int,
|
|
) -> tuple[int, list[npt.NDArray[Any]], list[int], list[GGUFValueType]]:
|
|
offs = orig_offs
|
|
types: list[GGUFValueType] = []
|
|
gtype = GGUFValueType(raw_type)
|
|
types.append(gtype)
|
|
# Handle strings.
|
|
if gtype == GGUFValueType.STRING:
|
|
sparts: list[npt.NDArray[Any]] = list(self._get_str(offs))
|
|
size = sum(int(part.nbytes) for part in sparts)
|
|
return size, sparts, [1], types
|
|
# Check if it's a simple scalar type.
|
|
nptype = self.gguf_scalar_to_np.get(gtype)
|
|
if nptype is not None:
|
|
val = self._get(offs, nptype)
|
|
return int(val.nbytes), [val], [0], types
|
|
# Handle arrays.
|
|
if gtype == GGUFValueType.ARRAY:
|
|
raw_itype = self._get(offs, np.uint32)
|
|
offs += int(raw_itype.nbytes)
|
|
alen = self._get(offs, np.uint64)
|
|
offs += int(alen.nbytes)
|
|
aparts: list[npt.NDArray[Any]] = [raw_itype, alen]
|
|
data_idxs: list[int] = []
|
|
for idx in range(alen[0]):
|
|
curr_size, curr_parts, curr_idxs, curr_types = self._get_field_parts(offs, raw_itype[0])
|
|
if idx == 0:
|
|
types += curr_types
|
|
idxs_offs = len(aparts)
|
|
aparts += curr_parts
|
|
data_idxs += (idx + idxs_offs for idx in curr_idxs)
|
|
offs += curr_size
|
|
return offs - orig_offs, aparts, data_idxs, types
|
|
# We can't deal with this one.
|
|
raise ValueError('Unknown/unhandled field type {gtype}')
|
|
|
|
def _get_tensor(self, orig_offs: int) -> ReaderField:
|
|
offs = orig_offs
|
|
name_len, name_data = self._get_str(offs)
|
|
offs += int(name_len.nbytes + name_data.nbytes)
|
|
n_dims = self._get(offs, np.uint32)
|
|
offs += int(n_dims.nbytes)
|
|
dims = self._get(offs, np.uint64, n_dims[0])
|
|
offs += int(dims.nbytes)
|
|
raw_dtype = self._get(offs, np.uint32)
|
|
offs += int(raw_dtype.nbytes)
|
|
offset_tensor = self._get(offs, np.uint64)
|
|
offs += int(offset_tensor.nbytes)
|
|
return ReaderField(
|
|
orig_offs,
|
|
str(bytes(name_data), encoding = 'utf-8'),
|
|
[name_len, name_data, n_dims, dims, raw_dtype, offset_tensor],
|
|
[1, 3, 4, 5],
|
|
)
|
|
|
|
def _build_fields(self, offs: int, count: int) -> int:
|
|
for _ in range(count):
|
|
orig_offs = offs
|
|
kv_klen, kv_kdata = self._get_str(offs)
|
|
offs += int(kv_klen.nbytes + kv_kdata.nbytes)
|
|
raw_kv_type = self._get(offs, np.uint32)
|
|
offs += int(raw_kv_type.nbytes)
|
|
parts: list[npt.NDArray[Any]] = [kv_klen, kv_kdata, raw_kv_type]
|
|
idxs_offs = len(parts)
|
|
field_size, field_parts, field_idxs, field_types = self._get_field_parts(offs, raw_kv_type[0])
|
|
parts += field_parts
|
|
self._push_field(ReaderField(
|
|
orig_offs,
|
|
str(bytes(kv_kdata), encoding = 'utf-8'),
|
|
parts,
|
|
[idx + idxs_offs for idx in field_idxs],
|
|
field_types,
|
|
), skip_sum = True)
|
|
offs += field_size
|
|
return offs
|
|
|
|
def _build_tensors_fields(self, offs: int, count: int) -> tuple[int, list[ReaderField]]:
|
|
tensor_fields = []
|
|
for _ in range(count):
|
|
field = self._get_tensor(offs)
|
|
offs += sum(int(part.nbytes) for part in field.parts)
|
|
tensor_fields.append(field)
|
|
return offs, tensor_fields
|
|
|
|
def _build_tensors(self, start_offs: int, fields: list[ReaderField]) -> None:
|
|
tensors = []
|
|
for field in fields:
|
|
_name_len, name_data, _n_dims, dims, raw_dtype, offset_tensor = field.parts
|
|
ggml_type = GGMLQuantizationType(raw_dtype[0])
|
|
n_elems = np.prod(dims)
|
|
block_size, type_size = GGML_QUANT_SIZES[ggml_type]
|
|
n_bytes = n_elems * type_size // block_size
|
|
data_offs = int(start_offs + offset_tensor[0])
|
|
item_type: npt.DTypeLike
|
|
if ggml_type == GGMLQuantizationType.F32:
|
|
item_count = n_elems
|
|
item_type = np.float32
|
|
elif ggml_type == GGMLQuantizationType.F16:
|
|
item_count = n_elems
|
|
item_type = np.float16
|
|
else:
|
|
item_count = n_bytes
|
|
item_type = np.uint8
|
|
tensors.append(ReaderTensor(
|
|
name = str(bytes(name_data), encoding = 'utf-8'),
|
|
tensor_type = ggml_type,
|
|
shape = dims,
|
|
n_elements = n_elems,
|
|
n_bytes = n_bytes,
|
|
data_offset = data_offs,
|
|
data = self._get(data_offs, item_type, item_count),
|
|
field = field,
|
|
))
|
|
self.tensors = tensors
|