mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-04 01:57:53 +01:00
bc4bba364f
* DRAFT: Introduction of CUDA Graphs to LLama.cpp
* FIx issues raised in comments
* Tidied to now only use CUDA runtime (not mixed with driver calls)
* disable for multi-gpu and batch size > 1
* Disable CUDA graphs for old GPU arch and with env var
* added missing CUDA_CHECKs
* Addressed comments
* further addressed comments
* limit to GGML_ALLOW_CUDA_GRAPHS defined in llama.cpp cmake
* Added more comprehensive graph node checking
* With mechanism to fall back if graph capture fails
* Revert "With mechanism to fall back if graph capture fails"
This reverts commit eb9f15fb6f
.
* Fall back if graph capture fails and address other comments
* - renamed GGML_ALLOW_CUDA_GRAPHS to GGML_CUDA_USE_GRAPHS
- rename env variable to disable CUDA graphs to GGML_CUDA_DISABLE_GRAPHS
- updated Makefile build to enable CUDA graphs
- removed graph capture failure checking in ggml_cuda_error
using a global variable to track this is not thread safe, but I am also not safistied with checking an error by string
if this is necessary to workaround some issues with graph capture with eg. cuBLAS, we can pass the ggml_backend_cuda_context to the error checking macro and store the result in the context
- fixed several resource leaks
- fixed issue with zero node graphs
- changed fixed size arrays to vectors
- removed the count of number of evaluations before start capturing, and instead changed the capture mode to relaxed
- removed the check for multiple devices so that it is still possible to use a single device, instead checks for split buffers to disable cuda graphs with -sm row
- changed the op for checking batch size to GGML_OP_ADD, should be more reliable than GGML_OP_SOFT_MAX
- code style fixes
- things to look into
- VRAM usage of the cudaGraphExec_t, if it is significant we may need to make it optional
- possibility of using cudaStreamBeginCaptureToGraph to keep track of which ggml graph nodes correspond to which cuda graph nodes
* fix build without cuda graphs
* remove outdated comment
* replace minimum cc value with a constant
---------
Co-authored-by: slaren <slarengh@gmail.com>
405 lines
18 KiB
Plaintext
405 lines
18 KiB
Plaintext
#include "mmvq.cuh"
|
|
#include "vecdotq.cuh"
|
|
|
|
typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
|
|
|
|
template <int ncols_y, int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
|
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
// tell the compiler to use as many registers as it wants, see nwarps definition below
|
|
__launch_bounds__((ncols_y <= 4 ? 4 : 2)*WARP_SIZE, 1)
|
|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
|
static __global__ void mul_mat_vec_q(
|
|
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
|
|
|
|
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
|
|
constexpr int nwarps = 1;
|
|
constexpr int rows_per_cuda_block = 1;
|
|
#else
|
|
constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
|
|
constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
|
|
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
|
|
|
|
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
|
const int row0 = rows_per_cuda_block*blockIdx.x;
|
|
const int blocks_per_row_x = ncols_x / qk;
|
|
const int blocks_per_col_y = nrows_y / QK8_1;
|
|
constexpr int blocks_per_iter = vdr * nwarps*WARP_SIZE / qi;
|
|
|
|
// partial sum for each thread
|
|
float tmp[ncols_y][rows_per_cuda_block] = {0.0f};
|
|
|
|
const block_q_t * x = (const block_q_t *) vx;
|
|
const block_q8_1 * y = (const block_q8_1 *) vy;
|
|
|
|
for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
|
|
const int kby = kbx * (qk/QK8_1); // y block index that aligns with kbx
|
|
|
|
// x block quant index when casting the quants to int
|
|
const int kqs = vdr * (tid % (qi/vdr));
|
|
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols_y; ++j) {
|
|
#pragma unroll
|
|
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
|
tmp[j][i] += vec_dot_q_cuda(
|
|
&x[kbx + (row0 + i)*blocks_per_row_x], &y[j*blocks_per_col_y + kby], kqs);
|
|
}
|
|
}
|
|
}
|
|
|
|
__shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_y][rows_per_cuda_block][WARP_SIZE];
|
|
if (threadIdx.y > 0) {
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols_y; ++j) {
|
|
#pragma unroll
|
|
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
|
tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i];
|
|
}
|
|
}
|
|
}
|
|
__syncthreads();
|
|
if (threadIdx.y > 0) {
|
|
return;
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
#pragma unroll
|
|
for (int j = 0; j < ncols_y; ++j) {
|
|
#pragma unroll
|
|
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
|
#pragma unroll
|
|
for (int l = 0; l < nwarps-1; ++l) {
|
|
tmp[j][i] += tmp_shared[l][j][i][threadIdx.x];
|
|
}
|
|
tmp[j][i] = warp_reduce_sum(tmp[j][i]);
|
|
}
|
|
|
|
if (threadIdx.x < rows_per_cuda_block) {
|
|
dst[j*nrows_dst + row0 + threadIdx.x] = tmp[j][threadIdx.x];
|
|
}
|
|
}
|
|
}
|
|
|
|
template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot>
|
|
static void mul_mat_vec_q_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
GGML_ASSERT(ncols_x % qk == 0);
|
|
GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
|
|
|
|
int id = ggml_cuda_get_device();
|
|
|
|
int64_t nwarps = 1;
|
|
int64_t rows_per_cuda_block = 1;
|
|
|
|
if (ggml_cuda_info().devices[id].cc < CC_RDNA2) { // NVIDIA and AMD older than RDNA2
|
|
switch(ncols_y) {
|
|
case 1:
|
|
nwarps = 4;
|
|
rows_per_cuda_block = 1;
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
case 4:
|
|
nwarps = 4;
|
|
rows_per_cuda_block = 2;
|
|
break;
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
case 8:
|
|
nwarps = 2;
|
|
rows_per_cuda_block = 2;
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
}
|
|
const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block;
|
|
const dim3 block_nums(nblocks, 1, 1);
|
|
const dim3 block_dims(WARP_SIZE, nwarps, 1);
|
|
|
|
switch (ncols_y) {
|
|
case 1:
|
|
mul_mat_vec_q<1, qk, qi, block_q_t, vdr, vec_dot>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
break;
|
|
case 2:
|
|
mul_mat_vec_q<2, qk, qi, block_q_t, vdr, vec_dot>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
break;
|
|
case 3:
|
|
mul_mat_vec_q<3, qk, qi, block_q_t, vdr, vec_dot>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
break;
|
|
case 4:
|
|
mul_mat_vec_q<4, qk, qi, block_q_t, vdr, vec_dot>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
break;
|
|
case 5:
|
|
mul_mat_vec_q<5, qk, qi, block_q_t, vdr, vec_dot>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
break;
|
|
case 6:
|
|
mul_mat_vec_q<6, qk, qi, block_q_t, vdr, vec_dot>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
break;
|
|
case 7:
|
|
mul_mat_vec_q<7, qk, qi, block_q_t, vdr, vec_dot>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
break;
|
|
case 8:
|
|
mul_mat_vec_q<8, qk, qi, block_q_t, vdr, vec_dot>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void mul_mat_vec_q4_0_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
|
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_q4_1_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
|
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_q5_0_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
|
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_q5_1_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
|
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_q8_0_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
|
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_q2_K_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
|
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_q3_K_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
|
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_q4_K_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
|
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_q5_K_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
|
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_q6_K_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
|
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_iq2_xxs_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<QK_K, QI2_XXS, block_iq2_xxs, 1, vec_dot_iq2_xxs_q8_1>
|
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_iq2_xs_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<QK_K, QI2_XS, block_iq2_xs, 1, vec_dot_iq2_xs_q8_1>
|
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_iq2_s_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<QK_K, QI2_S, block_iq2_s, 1, vec_dot_iq2_s_q8_1>
|
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_iq3_xxs_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<QK_K, QI3_XXS, block_iq3_xxs, 1, vec_dot_iq3_xxs_q8_1>
|
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_iq1_s_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<QK_K, QI1_S, block_iq1_s, 1, vec_dot_iq1_s_q8_1>
|
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_iq1_m_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<QK_K, QI1_S, block_iq1_m, 1, vec_dot_iq1_m_q8_1>
|
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_iq4_nl_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<QK4_NL, QI4_NL, block_iq4_nl, VDR_Q4_0_Q8_1_MMVQ, vec_dot_iq4_nl_q8_1>
|
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_iq4_xs_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<QK_K, QI4_XS, block_iq4_xs, 1, vec_dot_iq4_xs_q8_1>
|
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
static void mul_mat_vec_iq3_s_q8_1_cuda(
|
|
const void * vx, const void * vy, float * dst,
|
|
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
|
|
|
mul_mat_vec_q_cuda<QK_K, QI3_XS, block_iq3_s, 1, vec_dot_iq3_s_q8_1>
|
|
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
|
}
|
|
|
|
void ggml_cuda_op_mul_mat_vec_q(
|
|
ggml_backend_cuda_context & ctx,
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
|
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
|
const int64_t src1_padded_row_size, cudaStream_t stream) {
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t row_diff = row_high - row_low;
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
GGML_ASSERT(ne10 % QK8_1 == 0);
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
|
|
int id = ggml_cuda_get_device();
|
|
|
|
// the main device has a larger memory buffer to hold the results from all GPUs
|
|
// nrows_dst == nrows of the matrix that the kernel writes into
|
|
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_Q4_0:
|
|
mul_mat_vec_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q4_1:
|
|
mul_mat_vec_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_0:
|
|
mul_mat_vec_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_1:
|
|
mul_mat_vec_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q8_0:
|
|
mul_mat_vec_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q2_K:
|
|
mul_mat_vec_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q3_K:
|
|
mul_mat_vec_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q4_K:
|
|
mul_mat_vec_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_K:
|
|
mul_mat_vec_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_Q6_K:
|
|
mul_mat_vec_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_IQ2_XXS:
|
|
mul_mat_vec_iq2_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_IQ2_XS:
|
|
mul_mat_vec_iq2_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_IQ2_S:
|
|
mul_mat_vec_iq2_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_IQ3_XXS:
|
|
mul_mat_vec_iq3_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_IQ1_S:
|
|
mul_mat_vec_iq1_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_IQ1_M:
|
|
mul_mat_vec_iq1_m_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_IQ4_NL:
|
|
mul_mat_vec_iq4_nl_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_IQ4_XS:
|
|
mul_mat_vec_iq4_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
case GGML_TYPE_IQ3_S:
|
|
mul_mat_vec_iq3_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
|
|
GGML_UNUSED(src1);
|
|
GGML_UNUSED(dst);
|
|
GGML_UNUSED(src1_ddf_i);
|
|
GGML_UNUSED(src1_ncols);
|
|
GGML_UNUSED(src1_padded_row_size);
|
|
}
|