Georgi Gerganov f3f65429c4
llama : reorganize source code + improve CMake (#8006)
* scripts : update sync [no ci]

* files : relocate [no ci]

* ci : disable kompute build [no ci]

* cmake : fixes [no ci]

* server : fix mingw build

ggml-ci

* cmake : minor [no ci]

* cmake : link math library [no ci]

* cmake : build normal ggml library (not object library) [no ci]

* cmake : fix kompute build

ggml-ci

* make,cmake : fix LLAMA_CUDA + replace GGML_CDEF_PRIVATE

ggml-ci

* move public backend headers to the public include directory (#8122)

* move public backend headers to the public include directory

* nix test

* spm : fix metal header

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* scripts : fix sync paths [no ci]

* scripts : sync ggml-blas.h [no ci]

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-26 18:33:02 +03:00
..

CI

In addition to Github Actions llama.cpp uses a custom CI framework:

https://github.com/ggml-org/ci

It monitors the master branch for new commits and runs the ci/run.sh script on dedicated cloud instances. This allows us to execute heavier workloads compared to just using Github Actions. Also with time, the cloud instances will be scaled to cover various hardware architectures, including GPU and Apple Silicon instances.

Collaborators can optionally trigger the CI run by adding the ggml-ci keyword to their commit message. Only the branches of this repo are monitored for this keyword.

It is a good practice, before publishing changes to execute the full CI locally on your machine:

mkdir tmp

# CPU-only build
bash ./ci/run.sh ./tmp/results ./tmp/mnt

# with CUDA support
GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt

# with SYCL support
source /opt/intel/oneapi/setvars.sh
GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt