mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-01 00:39:00 +01:00
e7e4df031b
* llama : ggml-backend integration * ggml-backend : add names to buffers * fix unmap after loading * batched-bench : add tensor_split param * llama : check for null tensor_split * ggml-backend : increase GGML_MAX_BACKENDS * improve graph splitting, partial fix for --no-kv-offload * cuda : add ggml-backend split buffer support * cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available) * ggml : fix null backend dereference (#4807) * ggml : fix null backend dereference * ggml : also check ggml_backend_is_cpu * test-backend-ops : check buffer allocation failures * llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row) * ggml : fix mul_mat_id work size * llama : rewrite session kv load/set without graphs * minor * llama : only initialize used backends, free backends on context free * llama : abort ctx if cuda backend init fails * llama : rewrite lora with ggml-backend and compute on CPU ggml-ci * llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer * opencl : add ggml-backend buffer type * cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf) * llama : on Metal, by default offload the full model ggml-ci * metal : page align the data ptr (#4854) * Apply suggestions from code review Co-authored-by: Johannes Gäßler <johannesg@5d6.de> * cuda : fix split buffer free * address review comments * llama-bench : add split-mode parameter * fix whitespace * opencl : fix double initialization * server : add --split-mode parameter * use async copy and compute to improve multi-gpu performance ggml-ci * use async memcpys to copy the graph outputs to the CPU * fix opencl * use a host buffer for the cpu compute buffer for faster copies to the gpu --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
199 lines
10 KiB
C
199 lines
10 KiB
C
#pragma once
|
|
|
|
#include "ggml.h"
|
|
#include "ggml-alloc.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t;
|
|
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
|
|
typedef struct ggml_backend * ggml_backend_t;
|
|
typedef void * ggml_backend_graph_plan_t;
|
|
|
|
//
|
|
// Backend buffer
|
|
//
|
|
|
|
// buffer type
|
|
GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
|
|
GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
|
|
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
|
|
GGML_API size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
|
|
GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend);
|
|
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
|
|
|
|
// buffer
|
|
enum ggml_backend_buffer_usage {
|
|
GGML_BACKEND_BUFFER_USAGE_ANY = 0,
|
|
GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
|
|
};
|
|
|
|
GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer);
|
|
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
|
|
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
|
|
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
|
|
GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
|
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
|
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
|
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
|
|
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
|
|
GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
|
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer);
|
|
GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
|
|
|
|
//
|
|
// Backend
|
|
//
|
|
|
|
|
|
GGML_API const char * ggml_backend_name(ggml_backend_t backend);
|
|
GGML_API void ggml_backend_free(ggml_backend_t backend);
|
|
|
|
GGML_API ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend);
|
|
GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
|
|
GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend);
|
|
|
|
GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
|
GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
|
|
|
GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
|
GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
|
|
|
GGML_API void ggml_backend_synchronize(ggml_backend_t backend);
|
|
|
|
GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
|
|
|
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
|
GGML_API void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
|
GGML_API bool ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
|
GGML_API bool ggml_backend_supports_op (ggml_backend_t backend, const struct ggml_tensor * op);
|
|
|
|
// tensor copy between different backends
|
|
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
|
|
GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst); // automatic fallback to sync copy
|
|
|
|
//
|
|
// CPU backend
|
|
//
|
|
|
|
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
|
|
|
|
GGML_API bool ggml_backend_is_cpu(ggml_backend_t backend);
|
|
GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads);
|
|
|
|
// Create a backend buffer from an existing pointer
|
|
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
|
|
|
|
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
|
|
|
|
#ifdef GGML_USE_CPU_HBM
|
|
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
|
|
#endif
|
|
|
|
//
|
|
// Backend registry
|
|
//
|
|
|
|
// The backend registry is a registry of all the available backends, and allows initializing backends in a generic way
|
|
|
|
GGML_API size_t ggml_backend_reg_get_count(void);
|
|
GGML_API size_t ggml_backend_reg_find_by_name(const char * name);
|
|
GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is name[:params]
|
|
GGML_API const char * ggml_backend_reg_get_name(size_t i);
|
|
GGML_API ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params); // params is backend-specific
|
|
GGML_API ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i);
|
|
GGML_API ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size);
|
|
|
|
//
|
|
// Backend scheduler
|
|
//
|
|
|
|
// The backend scheduler allows for multiple backends to be used together
|
|
// Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends
|
|
// The backends are selected based on:
|
|
// - the backend that supports the operation
|
|
// - the location of the pre-allocated tensors (e.g. the weights)
|
|
/*
|
|
Example usage:
|
|
|
|
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, num_backends);
|
|
// sched is initialized with measure allocators and cannot be used until allocated with a measure graph
|
|
|
|
// initialize buffers from a measure graph
|
|
measure_graph = build_graph(sched); // use the allocr to allocate inputs as needed
|
|
|
|
// in build_graph:
|
|
build_graph(...) {
|
|
// allocating tensors in a specific backend (optional, recommended: pre-allocate inputs in a different buffer)
|
|
alloc_cpu = ggml_backend_sched_get_allocr(sched, backend_cpu);
|
|
ggml_allocr_alloc(alloc_cpu, tensor);
|
|
|
|
// manually assigning nodes to a backend (optional, shouldn't be needed in most cases)
|
|
struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
|
|
ggml_backend_sched_set_node_backend(sched, node, backend_gpu);
|
|
}
|
|
|
|
// allocate backend buffers from measure graph
|
|
ggml_backend_sched_init_measure(sched, measure_graph);
|
|
|
|
// the scheduler is now ready to compute graphs
|
|
|
|
// compute
|
|
graph = build_graph(sched);
|
|
ggml_backend_sched_graph_compute(sched, graph);
|
|
*/
|
|
|
|
struct ggml_backend_sched;
|
|
typedef struct ggml_backend_sched * ggml_backend_sched_t;
|
|
|
|
// Initialize a backend scheduler
|
|
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size);
|
|
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
|
|
// Initialize backend buffers from a measure graph
|
|
GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
|
|
// Get the number of splits of the last graph
|
|
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
|
|
|
|
GGML_API ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend);
|
|
GGML_API ggml_backend_buffer_t ggml_backend_sched_get_buffer (ggml_backend_sched_t sched, ggml_backend_t backend);
|
|
|
|
GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
|
|
GGML_API ggml_backend_t ggml_backend_sched_get_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
|
|
|
|
// Allocate and compute graph on the backend scheduler
|
|
GGML_API void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
|
|
|
|
// Reset all assignments and allocators - must be called before using the sched allocators to allocate inputs
|
|
GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched);
|
|
|
|
//
|
|
// Utils
|
|
//
|
|
|
|
struct ggml_backend_graph_copy {
|
|
ggml_backend_buffer_t buffer;
|
|
struct ggml_context * ctx_allocated;
|
|
struct ggml_context * ctx_unallocated;
|
|
struct ggml_cgraph * graph;
|
|
};
|
|
|
|
// Copy a graph to a different backend
|
|
GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph);
|
|
GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy);
|
|
|
|
typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
|
|
|
|
// Compare the output of two backends
|
|
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
|
|
|
|
// Tensor initialization
|
|
GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
|
|
GGML_API void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
|
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|