mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 13:27:21 +01:00
3a14e00366
* gguf-py : use classes for quants * convert_hf : simplify internal quantization type selection * gguf-py : fix flake8 lint * gguf-py : fix BF16 numpy view type * gguf-py : remove LlamaFileTypeMap Too specific to 'llama.cpp', and would be a maintenance burden to keep up to date. * gguf-py : add generic quantize and dequantize functions The quant classes no longer need to be known, only the target or the source type, for 'quantize' and 'dequantize', respectively.
214 lines
8.4 KiB
Python
214 lines
8.4 KiB
Python
from __future__ import annotations
|
|
from abc import ABC, ABCMeta, abstractmethod
|
|
|
|
import logging
|
|
from typing import Any, Callable
|
|
|
|
import numpy as np
|
|
from numpy.typing import DTypeLike
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class LazyMeta(ABCMeta):
|
|
|
|
def __new__(cls, name: str, bases: tuple[type, ...], namespace: dict[str, Any], **kwargs):
|
|
def __getattr__(self, name: str) -> Any:
|
|
meta_attr = getattr(self._meta, name)
|
|
if callable(meta_attr):
|
|
return type(self)._wrap_fn(
|
|
(lambda s, *args, **kwargs: getattr(s, name)(*args, **kwargs)),
|
|
use_self=self,
|
|
)
|
|
elif isinstance(meta_attr, self._tensor_type):
|
|
# e.g. self.T with torch.Tensor should still be wrapped
|
|
return type(self)._wrap_fn(lambda s: getattr(s, name))(self)
|
|
else:
|
|
# no need to wrap non-tensor properties,
|
|
# and they likely don't depend on the actual contents of the tensor
|
|
return meta_attr
|
|
|
|
namespace["__getattr__"] = __getattr__
|
|
|
|
# need to make a builder for the wrapped wrapper to copy the name,
|
|
# or else it fails with very cryptic error messages,
|
|
# because somehow the same string would end up in every closures
|
|
def mk_wrap(op_name: str, *, meta_noop: bool = False):
|
|
# need to wrap the wrapper to get self
|
|
def wrapped_special_op(self, *args, **kwargs):
|
|
return type(self)._wrap_fn(
|
|
getattr(type(self)._tensor_type, op_name),
|
|
meta_noop=meta_noop,
|
|
)(self, *args, **kwargs)
|
|
return wrapped_special_op
|
|
|
|
# special methods bypass __getattr__, so they need to be added manually
|
|
# ref: https://docs.python.org/3/reference/datamodel.html#special-lookup
|
|
# NOTE: doing this from a metaclass is very convenient
|
|
# TODO: make this even more comprehensive
|
|
for binary_op in (
|
|
"lt", "le", "eq", "ne", "ge", "gt", "not"
|
|
"abs", "add", "and", "floordiv", "invert", "lshift", "mod", "mul", "matmul",
|
|
"neg", "or", "pos", "pow", "rshift", "sub", "truediv", "xor",
|
|
"iadd", "iand", "ifloordiv", "ilshift", "imod", "imul", "ior", "irshift", "isub", "ixor",
|
|
"radd", "rand", "rfloordiv", "rmul", "ror", "rpow", "rsub", "rtruediv", "rxor",
|
|
):
|
|
attr_name = f"__{binary_op}__"
|
|
# the result of these operators usually has the same shape and dtype as the input,
|
|
# so evaluation on the meta tensor can be skipped.
|
|
namespace[attr_name] = mk_wrap(attr_name, meta_noop=True)
|
|
|
|
for special_op in (
|
|
"getitem", "setitem", "len",
|
|
):
|
|
attr_name = f"__{special_op}__"
|
|
namespace[attr_name] = mk_wrap(attr_name, meta_noop=False)
|
|
|
|
return super().__new__(cls, name, bases, namespace, **kwargs)
|
|
|
|
|
|
# Tree of lazy tensors
|
|
class LazyBase(ABC, metaclass=LazyMeta):
|
|
_tensor_type: type
|
|
_meta: Any
|
|
_data: Any | None
|
|
_args: tuple
|
|
_kwargs: dict[str, Any]
|
|
_func: Callable[[Any], Any] | None
|
|
|
|
def __init__(self, *, meta: Any, data: Any | None = None, args: tuple = (), kwargs: dict[str, Any] | None = None, func: Callable[[Any], Any] | None = None):
|
|
super().__init__()
|
|
self._meta = meta
|
|
self._data = data
|
|
self._args = args
|
|
self._kwargs = kwargs if kwargs is not None else {}
|
|
self._func = func
|
|
assert self._func is not None or self._data is not None
|
|
|
|
def __init_subclass__(cls) -> None:
|
|
if "_tensor_type" not in cls.__dict__:
|
|
raise TypeError(f"property '_tensor_type' must be defined for {cls!r}")
|
|
return super().__init_subclass__()
|
|
|
|
@staticmethod
|
|
def _recurse_apply(o: Any, fn: Callable[[Any], Any]) -> Any:
|
|
# TODO: dict and set
|
|
if isinstance(o, (list, tuple)):
|
|
L = []
|
|
for item in o:
|
|
L.append(LazyBase._recurse_apply(item, fn))
|
|
if isinstance(o, tuple):
|
|
L = tuple(L)
|
|
return L
|
|
elif isinstance(o, LazyBase):
|
|
return fn(o)
|
|
else:
|
|
return o
|
|
|
|
@classmethod
|
|
def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike | tuple[DTypeLike, Callable[[tuple[int, ...]], tuple[int, ...]]] = False) -> Callable[[Any], Any]:
|
|
def wrapped_fn(*args, **kwargs):
|
|
if kwargs is None:
|
|
kwargs = {}
|
|
args = ((use_self,) if use_self is not None else ()) + args
|
|
|
|
meta_args = LazyBase._recurse_apply(args, lambda t: t._meta)
|
|
# TODO: maybe handle tensors in kwargs too
|
|
|
|
if isinstance(meta_noop, bool) and not meta_noop:
|
|
try:
|
|
res = fn(*meta_args, **kwargs)
|
|
except NotImplementedError:
|
|
# running some operations on PyTorch's Meta tensors can cause this exception
|
|
res = None
|
|
else:
|
|
# some operators don't need to actually run on the meta tensors
|
|
assert len(args) > 0
|
|
res = args[0]
|
|
assert isinstance(res, cls)
|
|
res = res._meta
|
|
# allow operations to override the dtype and shape
|
|
if meta_noop is not True:
|
|
if isinstance(meta_noop, tuple):
|
|
dtype, shape = meta_noop
|
|
assert callable(shape)
|
|
res = cls.meta_with_dtype_and_shape(dtype, shape(res.shape))
|
|
else:
|
|
res = cls.meta_with_dtype_and_shape(meta_noop, res.shape)
|
|
|
|
if isinstance(res, cls._tensor_type):
|
|
return cls(meta=cls.eager_to_meta(res), args=args, kwargs=kwargs, func=fn)
|
|
else:
|
|
del res # not needed
|
|
# non-tensor return likely relies on the contents of the args
|
|
# (e.g. the result of torch.equal)
|
|
eager_args = cls.to_eager(args)
|
|
return fn(*eager_args, **kwargs)
|
|
return wrapped_fn
|
|
|
|
@classmethod
|
|
def to_eager(cls, t: Any) -> Any:
|
|
def simple_to_eager(_t: LazyBase) -> Any:
|
|
if _t._data is not None:
|
|
return _t._data
|
|
|
|
# NOTE: there's a recursion limit in Python (usually 1000)
|
|
|
|
assert _t._func is not None
|
|
_t._args = cls._recurse_apply(_t._args, simple_to_eager)
|
|
_t._data = _t._func(*_t._args, **_t._kwargs)
|
|
# sanity check
|
|
assert _t._data is not None
|
|
assert _t._data.dtype == _t._meta.dtype
|
|
assert _t._data.shape == _t._meta.shape
|
|
|
|
return _t._data
|
|
|
|
# recurse into lists and/or tuples, keeping their structure
|
|
return cls._recurse_apply(t, simple_to_eager)
|
|
|
|
@classmethod
|
|
def eager_to_meta(cls, t: Any) -> Any:
|
|
return cls.meta_with_dtype_and_shape(t.dtype, t.shape)
|
|
|
|
# must be overridden, meta tensor init is backend-specific
|
|
@classmethod
|
|
@abstractmethod
|
|
def meta_with_dtype_and_shape(cls, dtype: Any, shape: Any) -> Any: pass
|
|
|
|
@classmethod
|
|
def from_eager(cls, t: Any) -> Any:
|
|
if type(t) is cls:
|
|
# already lazy
|
|
return t
|
|
elif isinstance(t, cls._tensor_type):
|
|
return cls(meta=cls.eager_to_meta(t), data=t)
|
|
else:
|
|
return TypeError(f"{type(t)!r} is not compatible with {cls._tensor_type!r}")
|
|
|
|
|
|
class LazyNumpyTensor(LazyBase):
|
|
_tensor_type = np.ndarray
|
|
|
|
shape: tuple[int, ...] # Makes the type checker happy in quants.py
|
|
|
|
@classmethod
|
|
def meta_with_dtype_and_shape(cls, dtype: DTypeLike, shape: tuple[int, ...]) -> np.ndarray[Any, Any]:
|
|
# The initial idea was to use np.nan as the fill value,
|
|
# but non-float types like np.int16 can't use that.
|
|
# So zero it is.
|
|
cheat = np.zeros(1, dtype)
|
|
return np.lib.stride_tricks.as_strided(cheat, shape, (0 for _ in shape))
|
|
|
|
def astype(self, dtype, *args, **kwargs):
|
|
meta = type(self).meta_with_dtype_and_shape(dtype, self._meta.shape)
|
|
full_args = (self, dtype,) + args
|
|
return type(self)(meta=meta, args=full_args, kwargs=kwargs, func=(lambda a, *args, **kwargs: a.astype(*args, **kwargs)))
|
|
|
|
def tofile(self, *args, **kwargs):
|
|
eager = LazyNumpyTensor.to_eager(self)
|
|
return eager.tofile(*args, **kwargs)
|
|
|
|
# TODO: __array_function__
|