mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-02-07 00:43:14 +01:00
![Jeff Bolz](/assets/img/avatar_default.png)
* vulkan: support copy from f32 to q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl Shaders are based on cpy.cu. * vulkan: support copy from q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl to f32 * ggml: copy q->f32 assumes some contiguity in the destination
238 lines
6.5 KiB
Plaintext
238 lines
6.5 KiB
Plaintext
#version 450
|
|
|
|
#include "types.comp"
|
|
#include "generic_unary_head.comp"
|
|
|
|
#if defined(DATA_A_IQ4_NL)
|
|
// 16 invocations needed for init_iq4nl_shmem
|
|
layout(local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
|
|
#else
|
|
layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
|
|
#endif
|
|
|
|
layout (binding = 0) readonly buffer S {float data_s[];};
|
|
layout (binding = 1) writeonly buffer Q {A_TYPE data_q[];};
|
|
|
|
#if defined(DATA_A_Q4_0)
|
|
void quantize(uint dst_idx, uint src_idx)
|
|
{
|
|
float amax = 0.0;
|
|
float vmax = 0.0;
|
|
|
|
[[unroll]] for (int j = 0; j < QUANT_K_Q4_0; ++j) {
|
|
const float v = data_s[src_idx + j];
|
|
if (amax < abs(v)) {
|
|
amax = abs(v);
|
|
vmax = v;
|
|
}
|
|
}
|
|
|
|
const float d = vmax / -8;
|
|
const float id = (d != 0.0) ? 1.0/d : 0.0;
|
|
|
|
data_q[dst_idx].d = float16_t(d);
|
|
|
|
[[unroll]] for (int j = 0; j < QUANT_K_Q4_0/2; ++j) {
|
|
const float x0 = data_s[src_idx + 0 + j]*id;
|
|
const float x1 = data_s[src_idx + QUANT_K_Q4_0/2 + j]*id;
|
|
|
|
const uint xi0 = min(15, int(x0 + 8.5));
|
|
const uint xi1 = min(15, int(x1 + 8.5));
|
|
|
|
data_q[dst_idx].qs[j] = uint8_t(xi0 | (xi1 << 4));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(DATA_A_Q4_1)
|
|
void quantize(uint dst_idx, uint src_idx)
|
|
{
|
|
float vmin = 1.0/0.0;
|
|
float vmax = -vmin;
|
|
|
|
[[unroll]] for (int j = 0; j < QUANT_K_Q4_1; ++j) {
|
|
const float v = data_s[src_idx + j];
|
|
|
|
if (v < vmin) vmin = v;
|
|
if (v > vmax) vmax = v;
|
|
}
|
|
|
|
const float d = (vmax - vmin) / ((1 << 4) - 1);
|
|
const float id = (d != 0.0) ? 1.0/d : 0.0;
|
|
|
|
data_q[dst_idx].d = float16_t(d);
|
|
data_q[dst_idx].m = float16_t(vmin);
|
|
|
|
[[unroll]] for (int j = 0; j < QUANT_K_Q4_1/2; ++j) {
|
|
const float x0 = (data_s[src_idx + 0 + j] - vmin)*id;
|
|
const float x1 = (data_s[src_idx + QUANT_K_Q4_1/2 + j] - vmin)*id;
|
|
|
|
const uint xi0 = min(15, int(x0 + 0.5));
|
|
const uint xi1 = min(15, int(x1 + 0.5));
|
|
|
|
data_q[dst_idx].qs[j] = uint8_t(xi0 | (xi1 << 4));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(DATA_A_Q5_0)
|
|
void quantize(uint dst_idx, uint src_idx)
|
|
{
|
|
float amax = 0.0;
|
|
float vmax = 0.0;
|
|
|
|
[[unroll]] for (int j = 0; j < QUANT_K_Q5_0; ++j) {
|
|
const float v = data_s[src_idx + j];
|
|
if (amax < abs(v)) {
|
|
amax = abs(v);
|
|
vmax = v;
|
|
}
|
|
}
|
|
|
|
const float d = vmax / -16;
|
|
const float id = (d != 0.0) ? 1.0/d : 0.0;
|
|
|
|
data_q[dst_idx].d = float16_t(d);
|
|
|
|
uint32_t qh = 0;
|
|
[[unroll]] for (int j = 0; j < QUANT_K_Q5_0/2; ++j) {
|
|
const float x0 = data_s[src_idx + 0 + j]*id;
|
|
const float x1 = data_s[src_idx + QUANT_K_Q5_0/2 + j]*id;
|
|
|
|
const uint xi0 = min(31, int(x0 + 16.5));
|
|
const uint xi1 = min(31, int(x1 + 16.5));
|
|
|
|
data_q[dst_idx].qs[j] = uint8_t((xi0 & 0xf) | ((xi1 & 0xf) << 4));
|
|
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
|
qh |= ((xi1 & 0x10u) >> 4) << (j + QUANT_K_Q5_0/2);
|
|
}
|
|
data_q[dst_idx].qh[0] = uint16_t(qh & 0xFFFF);
|
|
data_q[dst_idx].qh[1] = uint16_t(qh >> 16);
|
|
}
|
|
#endif
|
|
|
|
#if defined(DATA_A_Q5_1)
|
|
void quantize(uint dst_idx, uint src_idx)
|
|
{
|
|
float min = data_s[src_idx + 0];
|
|
float max = min;
|
|
|
|
[[unroll]] for (int j = 1; j < QUANT_K_Q5_1; ++j) {
|
|
const float v = data_s[src_idx + j];
|
|
min = v < min ? v : min;
|
|
max = v > max ? v : max;
|
|
}
|
|
|
|
const float d = (max - min) / 31;
|
|
const float id = (d != 0) ? 1.0/d : 0.0;
|
|
|
|
data_q[dst_idx].d = float16_t(d);
|
|
data_q[dst_idx].m = float16_t(min);
|
|
|
|
uint32_t qh = 0;
|
|
[[unroll]] for (int j = 0; j < QUANT_K_Q5_1/2; ++j) {
|
|
const float x0 = (data_s[src_idx + 0 + j] - min)*id;
|
|
const float x1 = (data_s[src_idx + QUANT_K_Q5_1/2 + j] - min)*id;
|
|
|
|
const uint xi0 = uint(x0 + 0.5);
|
|
const uint xi1 = uint(x1 + 0.5);
|
|
|
|
data_q[dst_idx].qs[j] = uint8_t((xi0 & 0xf) | ((xi1 & 0xf) << 4));
|
|
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
|
qh |= ((xi1 & 0x10u) >> 4) << (j + QUANT_K_Q5_1/2);
|
|
}
|
|
data_q[dst_idx].qh = qh;
|
|
}
|
|
#endif
|
|
|
|
#if defined(DATA_A_Q8_0)
|
|
void quantize(uint dst_idx, uint src_idx)
|
|
{
|
|
float amax = 0.0; // absolute max
|
|
|
|
[[unroll]] for (int j = 0; j < QUANT_K_Q8_0; j++) {
|
|
const float v = data_s[src_idx + j];
|
|
amax = max(amax, abs(v));
|
|
}
|
|
|
|
const float d = amax / ((1 << 7) - 1);
|
|
const float id = (d != 0.0) ? 1.0/d : 0.0;
|
|
|
|
data_q[dst_idx].d = float16_t(d);
|
|
|
|
[[unroll]] for (int j = 0; j < QUANT_K_Q8_0; ++j) {
|
|
const float x0 = data_s[src_idx + j]*id;
|
|
|
|
data_q[dst_idx].qs[j] = int8_t(round(x0));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(DATA_A_IQ4_NL)
|
|
uint best_index(float x) {
|
|
if (x <= kvalues_iq4nl[0]) return 0;
|
|
if (x >= kvalues_iq4nl[15]) return 15;
|
|
int ml = 0, mu = 15;
|
|
while (mu-ml > 1) {
|
|
int mav = (ml+mu)/2;
|
|
if (x < kvalues_iq4nl[mav]) mu = mav; else ml = mav;
|
|
}
|
|
return x - kvalues_iq4nl[mu-1] < kvalues_iq4nl[mu] - x ? mu-1 : mu;
|
|
}
|
|
|
|
void quantize(uint dst_idx, uint src_idx)
|
|
{
|
|
float amax = 0.0;
|
|
float vmax = 0.0;
|
|
|
|
[[unroll]] for (int j = 0; j < QUANT_K_IQ4_NL; ++j) {
|
|
const float v = data_s[src_idx + j];
|
|
if (amax < abs(v)) {
|
|
amax = abs(v);
|
|
vmax = v;
|
|
}
|
|
}
|
|
|
|
float d = vmax / kvalues_iq4nl[0];
|
|
const float id = (d != 0.0) ? 1.0/d : 0.0;
|
|
|
|
float sumqx = 0, sumq2 = 0;
|
|
[[unroll]] for (int j = 0; j < QUANT_K_IQ4_NL/2; ++j) {
|
|
const float x0 = data_s[src_idx + 0 + j]*id;
|
|
const float x1 = data_s[src_idx + QUANT_K_IQ4_NL/2 + j]*id;
|
|
const uint xi0 = best_index(x0);
|
|
const uint xi1 = best_index(x1);
|
|
data_q[dst_idx].qs[j] = uint8_t(xi0 | (xi1 << 4));
|
|
const float v0 = kvalues_iq4nl[xi0];
|
|
const float v1 = kvalues_iq4nl[xi1];
|
|
const float w0 = data_s[src_idx + 0 + j]*data_s[src_idx + 0 + j];
|
|
const float w1 = data_s[src_idx + QUANT_K_IQ4_NL/2 + j]*data_s[src_idx + QUANT_K_IQ4_NL/2 + j];
|
|
sumqx += w0*v0*data_s[src_idx + j] + w1*v1*data_s[src_idx + QUANT_K_IQ4_NL/2 + j];
|
|
sumq2 += w0*v0*v0 + w1*v1*v1;
|
|
}
|
|
|
|
data_q[dst_idx].d = float16_t(sumq2 > 0 ? sumqx/sumq2 : d);
|
|
|
|
}
|
|
#endif
|
|
|
|
void main() {
|
|
#if defined(DATA_A_IQ4_NL)
|
|
init_iq4nl_shmem();
|
|
if (gl_LocalInvocationIndex.x != 0) {
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
const uint idx = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x * QUANT_K;
|
|
|
|
if (idx >= p.ne) {
|
|
return;
|
|
}
|
|
|
|
uint dst_idx = dst_idx_quant(idx, QUANT_K);
|
|
uint src_idx = get_aoffset() + src0_idx(idx);
|
|
|
|
quantize(dst_idx, src_idx);
|
|
}
|