llama.cpp/ggml/src/ggml-vulkan/vulkan-shaders/copy_to_quant.comp
Jeff Bolz bd38ddea01
vulkan: support copy from f32 to q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl (#11166)
* vulkan: support copy from f32 to q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl

Shaders are based on cpy.cu.

* vulkan: support copy from q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl to f32

* ggml: copy q->f32 assumes some contiguity in the destination
2025-01-16 22:47:10 +01:00

238 lines
6.5 KiB
Plaintext

#version 450
#include "types.comp"
#include "generic_unary_head.comp"
#if defined(DATA_A_IQ4_NL)
// 16 invocations needed for init_iq4nl_shmem
layout(local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
#else
layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
#endif
layout (binding = 0) readonly buffer S {float data_s[];};
layout (binding = 1) writeonly buffer Q {A_TYPE data_q[];};
#if defined(DATA_A_Q4_0)
void quantize(uint dst_idx, uint src_idx)
{
float amax = 0.0;
float vmax = 0.0;
[[unroll]] for (int j = 0; j < QUANT_K_Q4_0; ++j) {
const float v = data_s[src_idx + j];
if (amax < abs(v)) {
amax = abs(v);
vmax = v;
}
}
const float d = vmax / -8;
const float id = (d != 0.0) ? 1.0/d : 0.0;
data_q[dst_idx].d = float16_t(d);
[[unroll]] for (int j = 0; j < QUANT_K_Q4_0/2; ++j) {
const float x0 = data_s[src_idx + 0 + j]*id;
const float x1 = data_s[src_idx + QUANT_K_Q4_0/2 + j]*id;
const uint xi0 = min(15, int(x0 + 8.5));
const uint xi1 = min(15, int(x1 + 8.5));
data_q[dst_idx].qs[j] = uint8_t(xi0 | (xi1 << 4));
}
}
#endif
#if defined(DATA_A_Q4_1)
void quantize(uint dst_idx, uint src_idx)
{
float vmin = 1.0/0.0;
float vmax = -vmin;
[[unroll]] for (int j = 0; j < QUANT_K_Q4_1; ++j) {
const float v = data_s[src_idx + j];
if (v < vmin) vmin = v;
if (v > vmax) vmax = v;
}
const float d = (vmax - vmin) / ((1 << 4) - 1);
const float id = (d != 0.0) ? 1.0/d : 0.0;
data_q[dst_idx].d = float16_t(d);
data_q[dst_idx].m = float16_t(vmin);
[[unroll]] for (int j = 0; j < QUANT_K_Q4_1/2; ++j) {
const float x0 = (data_s[src_idx + 0 + j] - vmin)*id;
const float x1 = (data_s[src_idx + QUANT_K_Q4_1/2 + j] - vmin)*id;
const uint xi0 = min(15, int(x0 + 0.5));
const uint xi1 = min(15, int(x1 + 0.5));
data_q[dst_idx].qs[j] = uint8_t(xi0 | (xi1 << 4));
}
}
#endif
#if defined(DATA_A_Q5_0)
void quantize(uint dst_idx, uint src_idx)
{
float amax = 0.0;
float vmax = 0.0;
[[unroll]] for (int j = 0; j < QUANT_K_Q5_0; ++j) {
const float v = data_s[src_idx + j];
if (amax < abs(v)) {
amax = abs(v);
vmax = v;
}
}
const float d = vmax / -16;
const float id = (d != 0.0) ? 1.0/d : 0.0;
data_q[dst_idx].d = float16_t(d);
uint32_t qh = 0;
[[unroll]] for (int j = 0; j < QUANT_K_Q5_0/2; ++j) {
const float x0 = data_s[src_idx + 0 + j]*id;
const float x1 = data_s[src_idx + QUANT_K_Q5_0/2 + j]*id;
const uint xi0 = min(31, int(x0 + 16.5));
const uint xi1 = min(31, int(x1 + 16.5));
data_q[dst_idx].qs[j] = uint8_t((xi0 & 0xf) | ((xi1 & 0xf) << 4));
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
qh |= ((xi1 & 0x10u) >> 4) << (j + QUANT_K_Q5_0/2);
}
data_q[dst_idx].qh[0] = uint16_t(qh & 0xFFFF);
data_q[dst_idx].qh[1] = uint16_t(qh >> 16);
}
#endif
#if defined(DATA_A_Q5_1)
void quantize(uint dst_idx, uint src_idx)
{
float min = data_s[src_idx + 0];
float max = min;
[[unroll]] for (int j = 1; j < QUANT_K_Q5_1; ++j) {
const float v = data_s[src_idx + j];
min = v < min ? v : min;
max = v > max ? v : max;
}
const float d = (max - min) / 31;
const float id = (d != 0) ? 1.0/d : 0.0;
data_q[dst_idx].d = float16_t(d);
data_q[dst_idx].m = float16_t(min);
uint32_t qh = 0;
[[unroll]] for (int j = 0; j < QUANT_K_Q5_1/2; ++j) {
const float x0 = (data_s[src_idx + 0 + j] - min)*id;
const float x1 = (data_s[src_idx + QUANT_K_Q5_1/2 + j] - min)*id;
const uint xi0 = uint(x0 + 0.5);
const uint xi1 = uint(x1 + 0.5);
data_q[dst_idx].qs[j] = uint8_t((xi0 & 0xf) | ((xi1 & 0xf) << 4));
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
qh |= ((xi1 & 0x10u) >> 4) << (j + QUANT_K_Q5_1/2);
}
data_q[dst_idx].qh = qh;
}
#endif
#if defined(DATA_A_Q8_0)
void quantize(uint dst_idx, uint src_idx)
{
float amax = 0.0; // absolute max
[[unroll]] for (int j = 0; j < QUANT_K_Q8_0; j++) {
const float v = data_s[src_idx + j];
amax = max(amax, abs(v));
}
const float d = amax / ((1 << 7) - 1);
const float id = (d != 0.0) ? 1.0/d : 0.0;
data_q[dst_idx].d = float16_t(d);
[[unroll]] for (int j = 0; j < QUANT_K_Q8_0; ++j) {
const float x0 = data_s[src_idx + j]*id;
data_q[dst_idx].qs[j] = int8_t(round(x0));
}
}
#endif
#if defined(DATA_A_IQ4_NL)
uint best_index(float x) {
if (x <= kvalues_iq4nl[0]) return 0;
if (x >= kvalues_iq4nl[15]) return 15;
int ml = 0, mu = 15;
while (mu-ml > 1) {
int mav = (ml+mu)/2;
if (x < kvalues_iq4nl[mav]) mu = mav; else ml = mav;
}
return x - kvalues_iq4nl[mu-1] < kvalues_iq4nl[mu] - x ? mu-1 : mu;
}
void quantize(uint dst_idx, uint src_idx)
{
float amax = 0.0;
float vmax = 0.0;
[[unroll]] for (int j = 0; j < QUANT_K_IQ4_NL; ++j) {
const float v = data_s[src_idx + j];
if (amax < abs(v)) {
amax = abs(v);
vmax = v;
}
}
float d = vmax / kvalues_iq4nl[0];
const float id = (d != 0.0) ? 1.0/d : 0.0;
float sumqx = 0, sumq2 = 0;
[[unroll]] for (int j = 0; j < QUANT_K_IQ4_NL/2; ++j) {
const float x0 = data_s[src_idx + 0 + j]*id;
const float x1 = data_s[src_idx + QUANT_K_IQ4_NL/2 + j]*id;
const uint xi0 = best_index(x0);
const uint xi1 = best_index(x1);
data_q[dst_idx].qs[j] = uint8_t(xi0 | (xi1 << 4));
const float v0 = kvalues_iq4nl[xi0];
const float v1 = kvalues_iq4nl[xi1];
const float w0 = data_s[src_idx + 0 + j]*data_s[src_idx + 0 + j];
const float w1 = data_s[src_idx + QUANT_K_IQ4_NL/2 + j]*data_s[src_idx + QUANT_K_IQ4_NL/2 + j];
sumqx += w0*v0*data_s[src_idx + j] + w1*v1*data_s[src_idx + QUANT_K_IQ4_NL/2 + j];
sumq2 += w0*v0*v0 + w1*v1*v1;
}
data_q[dst_idx].d = float16_t(sumq2 > 0 ? sumqx/sumq2 : d);
}
#endif
void main() {
#if defined(DATA_A_IQ4_NL)
init_iq4nl_shmem();
if (gl_LocalInvocationIndex.x != 0) {
return;
}
#endif
const uint idx = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x * QUANT_K;
if (idx >= p.ne) {
return;
}
uint dst_idx = dst_idx_quant(idx, QUANT_K);
uint src_idx = get_aoffset() + src0_idx(idx);
quantize(dst_idx, src_idx);
}