mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-10 04:20:24 +01:00
05c3a444b8
* server : fill usage info in embeddings response * server : fill usage info in reranking response
79 lines
3.0 KiB
Python
79 lines
3.0 KiB
Python
import pytest
|
|
from utils import *
|
|
|
|
server = ServerPreset.jina_reranker_tiny()
|
|
|
|
|
|
@pytest.fixture(scope="module", autouse=True)
|
|
def create_server():
|
|
global server
|
|
server = ServerPreset.jina_reranker_tiny()
|
|
|
|
|
|
def test_rerank():
|
|
global server
|
|
server.start()
|
|
res = server.make_request("POST", "/rerank", data={
|
|
"query": "Machine learning is",
|
|
"documents": [
|
|
"A machine is a physical system that uses power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromolecules, such as molecular machines.",
|
|
"Learning is the process of acquiring new understanding, knowledge, behaviors, skills, values, attitudes, and preferences. The ability to learn is possessed by humans, non-human animals, and some machines; there is also evidence for some kind of learning in certain plants.",
|
|
"Machine learning is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions.",
|
|
"Paris, capitale de la France, est une grande ville européenne et un centre mondial de l'art, de la mode, de la gastronomie et de la culture. Son paysage urbain du XIXe siècle est traversé par de larges boulevards et la Seine."
|
|
]
|
|
})
|
|
assert res.status_code == 200
|
|
assert len(res.body["results"]) == 4
|
|
|
|
most_relevant = res.body["results"][0]
|
|
least_relevant = res.body["results"][0]
|
|
for doc in res.body["results"]:
|
|
if doc["relevance_score"] > most_relevant["relevance_score"]:
|
|
most_relevant = doc
|
|
if doc["relevance_score"] < least_relevant["relevance_score"]:
|
|
least_relevant = doc
|
|
|
|
assert most_relevant["relevance_score"] > least_relevant["relevance_score"]
|
|
assert most_relevant["index"] == 2
|
|
assert least_relevant["index"] == 3
|
|
|
|
|
|
@pytest.mark.parametrize("documents", [
|
|
[],
|
|
None,
|
|
123,
|
|
[1, 2, 3],
|
|
])
|
|
def test_invalid_rerank_req(documents):
|
|
global server
|
|
server.start()
|
|
res = server.make_request("POST", "/rerank", data={
|
|
"query": "Machine learning is",
|
|
"documents": documents,
|
|
})
|
|
assert res.status_code == 400
|
|
assert "error" in res.body
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"query,doc1,doc2,n_tokens",
|
|
[
|
|
("Machine learning is", "A machine", "Learning is", 19),
|
|
("Which city?", "Machine learning is ", "Paris, capitale de la", 26),
|
|
]
|
|
)
|
|
def test_rerank_usage(query, doc1, doc2, n_tokens):
|
|
global server
|
|
server.start()
|
|
|
|
res = server.make_request("POST", "/rerank", data={
|
|
"query": query,
|
|
"documents": [
|
|
doc1,
|
|
doc2,
|
|
]
|
|
})
|
|
assert res.status_code == 200
|
|
assert res.body['usage']['prompt_tokens'] == res.body['usage']['total_tokens']
|
|
assert res.body['usage']['prompt_tokens'] == n_tokens
|