mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-30 16:07:17 +01:00
1c641e6aac
* `main`/`server`: rename to `llama` / `llama-server` for consistency w/ homebrew
* server: update refs -> llama-server
gitignore llama-server
* server: simplify nix package
* main: update refs -> llama
fix examples/main ref
* main/server: fix targets
* update more names
* Update build.yml
* rm accidentally checked in bins
* update straggling refs
* Update .gitignore
* Update server-llm.sh
* main: target name -> llama-cli
* Prefix all example bins w/ llama-
* fix main refs
* rename {main->llama}-cmake-pkg binary
* prefix more cmake targets w/ llama-
* add/fix gbnf-validator subfolder to cmake
* sort cmake example subdirs
* rm bin files
* fix llama-lookup-* Makefile rules
* gitignore /llama-*
* rename Dockerfiles
* rename llama|main -> llama-cli; consistent RPM bin prefixes
* fix some missing -cli suffixes
* rename dockerfile w/ llama-cli
* rename(make): llama-baby-llama
* update dockerfile refs
* more llama-cli(.exe)
* fix test-eval-callback
* rename: llama-cli-cmake-pkg(.exe)
* address gbnf-validator unused fread warning (switched to C++ / ifstream)
* add two missing llama- prefixes
* Updating docs for eval-callback binary to use new `llama-` prefix.
* Updating a few lingering doc references for rename of main to llama-cli
* Updating `run-with-preset.py` to use new binary names.
Updating docs around `perplexity` binary rename.
* Updating documentation references for lookup-merge and export-lora
* Updating two small `main` references missed earlier in the finetune docs.
* Update apps.nix
* update grammar/README.md w/ new llama-* names
* update llama-rpc-server bin name + doc
* Revert "update llama-rpc-server bin name + doc"
This reverts commit
|
||
---|---|---|
.. | ||
graph.py | ||
jeopardy.sh | ||
qasheet.csv | ||
questions.txt | ||
README.md |
llama.cpp/example/jeopardy
This is pretty much just a straight port of aigoopy/llm-jeopardy/ with an added graph viewer.
The jeopardy test can be used to compare the fact knowledge of different models and compare them to each other. This is in contrast to some other tests, which test logical deduction, creativity, writing skills, etc.
Step 1: Open jeopardy.sh and modify the following:
MODEL=(path to your model)
MODEL_NAME=(name of your model)
prefix=(basically, if you use vicuna it's Human: , if you use something else it might be User: , etc)
opts=(add -instruct here if needed for your model, or anything else you want to test out)
Step 2: Run jeopardy.sh
from the llama.cpp folder
Step 3: Repeat steps 1 and 2 until you have all the results you need.
Step 4: Run graph.py
, and follow the instructions. At the end, it will generate your final graph.
Note: The Human bar is based off of the full, original 100 sample questions. If you modify the question count or questions, it will not be valid.