mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-22 09:39:08 +01:00
16bc66d947
* llama.cpp : split llama_context_params into model and context params ggml-ci * fix metal build * fix freq_base/scale default to model value * llama-bench : keep the same model between tests when possible * move n_threads to llama_context_params, add n_threads_batch * fix mpi build * remove kv_size(), cuda scratch fixes * remove low-vram option * add n_threads_batch to system info, refactor to get_system_info() * add documentation about --threads-batch to the READMEs * llama-bench fix * main : fix rope freq/scale warning * llama.cpp : add llama_get_model common : add llama_tokenize from model * remove duplicated ctx/model functions ggml-ci * cuda : print total VRAM used
164 lines
5.1 KiB
C++
164 lines
5.1 KiB
C++
#include "build-info.h"
|
|
#include "common.h"
|
|
#include "llama.h"
|
|
|
|
#include <vector>
|
|
#include <cstdio>
|
|
#include <chrono>
|
|
|
|
int main(int argc, char ** argv) {
|
|
gpt_params params;
|
|
params.seed = 42;
|
|
params.n_threads = 4;
|
|
params.repeat_last_n = 64;
|
|
params.prompt = "The quick brown fox";
|
|
|
|
if (!gpt_params_parse(argc, argv, params)) {
|
|
return 1;
|
|
}
|
|
|
|
print_build_info();
|
|
|
|
if (params.n_predict < 0) {
|
|
params.n_predict = 16;
|
|
}
|
|
|
|
auto n_past = 0;
|
|
auto last_n_tokens_data = std::vector<llama_token>(params.repeat_last_n, 0);
|
|
|
|
// init
|
|
llama_model * model;
|
|
llama_context * ctx;
|
|
|
|
std::tie(model, ctx) = llama_init_from_gpt_params( params );
|
|
if (model == nullptr) {
|
|
return 1;
|
|
}
|
|
if (ctx == nullptr) {
|
|
llama_free_model(model);
|
|
return 1;
|
|
}
|
|
auto tokens = llama_tokenize(ctx, params.prompt, true);
|
|
auto n_prompt_tokens = tokens.size();
|
|
if (n_prompt_tokens < 1) {
|
|
fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
return 1;
|
|
}
|
|
|
|
// evaluate prompt
|
|
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_prompt_tokens, n_past, 0));
|
|
|
|
last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens);
|
|
n_past += n_prompt_tokens;
|
|
|
|
const size_t state_size = llama_get_state_size(ctx);
|
|
uint8_t * state_mem = new uint8_t[state_size];
|
|
|
|
// Save state (rng, logits, embedding and kv_cache) to file
|
|
{
|
|
FILE *fp_write = fopen("dump_state.bin", "wb");
|
|
llama_copy_state_data(ctx, state_mem); // could also copy directly to memory mapped file
|
|
fwrite(state_mem, 1, state_size, fp_write);
|
|
fclose(fp_write);
|
|
}
|
|
|
|
// save state (last tokens)
|
|
const auto last_n_tokens_data_saved = std::vector<llama_token>(last_n_tokens_data);
|
|
const auto n_past_saved = n_past;
|
|
|
|
// first run
|
|
printf("\n%s", params.prompt.c_str());
|
|
|
|
for (auto i = 0; i < params.n_predict; i++) {
|
|
auto * logits = llama_get_logits(ctx);
|
|
auto n_vocab = llama_n_vocab(model);
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
|
}
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
auto next_token = llama_sample_token(ctx, &candidates_p);
|
|
auto next_token_str = llama_token_to_piece(ctx, next_token);
|
|
last_n_tokens_data.push_back(next_token);
|
|
|
|
printf("%s", next_token_str.c_str());
|
|
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
|
|
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
return 1;
|
|
}
|
|
n_past += 1;
|
|
}
|
|
|
|
printf("\n\n");
|
|
|
|
// free old context
|
|
llama_free(ctx);
|
|
|
|
// make new context
|
|
auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
|
|
|
|
// Load state (rng, logits, embedding and kv_cache) from file
|
|
{
|
|
FILE *fp_read = fopen("dump_state.bin", "rb");
|
|
if (state_size != llama_get_state_size(ctx2)) {
|
|
fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
|
|
llama_free(ctx2);
|
|
llama_free_model(model);
|
|
return 1;
|
|
}
|
|
|
|
const size_t ret = fread(state_mem, 1, state_size, fp_read);
|
|
if (ret != state_size) {
|
|
fprintf(stderr, "\n%s : failed to read state\n", __func__);
|
|
llama_free(ctx2);
|
|
llama_free_model(model);
|
|
return 1;
|
|
}
|
|
|
|
llama_set_state_data(ctx2, state_mem); // could also read directly from memory mapped file
|
|
fclose(fp_read);
|
|
}
|
|
|
|
delete[] state_mem;
|
|
|
|
// restore state (last tokens)
|
|
last_n_tokens_data = last_n_tokens_data_saved;
|
|
n_past = n_past_saved;
|
|
|
|
// second run
|
|
for (auto i = 0; i < params.n_predict; i++) {
|
|
auto * logits = llama_get_logits(ctx2);
|
|
auto n_vocab = llama_n_vocab(model);
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
|
}
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
auto next_token = llama_sample_token(ctx2, &candidates_p);
|
|
auto next_token_str = llama_token_to_piece(ctx2, next_token);
|
|
last_n_tokens_data.push_back(next_token);
|
|
|
|
printf("%s", next_token_str.c_str());
|
|
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
|
|
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
|
llama_free(ctx2);
|
|
llama_free_model(model);
|
|
return 1;
|
|
}
|
|
n_past += 1;
|
|
}
|
|
|
|
printf("\n\n");
|
|
|
|
llama_free(ctx2);
|
|
llama_free_model(model);
|
|
|
|
return 0;
|
|
}
|