1
0
mirror of https://github.com/ggerganov/llama.cpp.git synced 2025-01-16 15:18:26 +01:00
llama.cpp/tests/test-tokenizer-random.py
compilade fa79495bb4
llama : fix pre-tokenization of non-special added tokens ()
* llama : fix mpt and olmo pre-tokenizer

* llama : pre-tokenize non-special user-defined tokens first

* llama : fix detection of control-like user-defined tokens

* convert_hf : identify which user-defined tokens are control tokens

Only used in _set_vocab_gpt2() for now.

* convert_hf : identify more added control tokens for SPM tokenziers

This makes Gemma and Gemma-2 tokenize pretty much EVERYTHING correctly,
including HTML tags and consecutive spaces,
but it unfortunately requires model re-conversion.

There seems to be a weird behavior of the HF tokenizer for Gemma,
which prefers to use the 16-space token over more lengthy space tokens,
while using the SentencePiece tokenizer does not do this.
(the implementation in llama.cpp has the same behavior as SentencePiece)

* llama : fix wrong pre-tokenization of byte tokens

* llama : fix Viking pre-tokenizer regex

The order was previously wrong, which caused errors in some tests.

* llama : fix command-r detokenization

* convert_hf : reduce usages of the UNKNOWN token type

* llama : add UNKNOWN tokens in the special tokens cache

* convert_hf : reduce usages of UNKNOWN for InternLM2

This makes the changes from  more consistent
with the other changes made here.

* test-tokenizer-random : reduce potential confilcts with 

* test-tokenizer-random : add a failing edge case for falcon
2024-07-13 23:35:10 -04:00

567 lines
22 KiB
Python
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Test libllama tokenizer == AutoTokenizer.
# Brute force random words/text generation.
#
# Sample usage:
#
# python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe
#
from __future__ import annotations
import time
import logging
import argparse
import subprocess
import random
import unicodedata
from pathlib import Path
from typing import Any, Iterator, cast
from typing_extensions import Buffer
import cffi
from transformers import AutoTokenizer, PreTrainedTokenizer
logger = logging.getLogger("test-tokenizer-random")
class LibLlama:
DEFAULT_PATH_LLAMA_H = "./include/llama.h"
DEFAULT_PATH_INCLUDES = ["./ggml/include/", "./include/"]
DEFAULT_PATH_LIBLLAMA = "./build/src/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON
def __init__(self, path_llama_h: str | None = None, path_includes: list[str] = [], path_libllama: str | None = None):
path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H
path_includes = path_includes or self.DEFAULT_PATH_INCLUDES
path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA
(self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_includes, path_libllama)
self.lib.llama_backend_init()
def _load_libllama_cffi(self, path_llama_h: str, path_includes: list[str], path_libllama: str) -> tuple[cffi.FFI, Any]:
cmd = ["gcc", "-O0", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)="]
cmd += ["-I" + path for path in path_includes] + [path_llama_h]
res = subprocess.run(cmd, stdout=subprocess.PIPE)
assert (res.returncode == 0)
source = res.stdout.decode()
ffi = cffi.FFI()
if True: # workarounds for pycparser
source = "typedef struct { } __builtin_va_list;" + "\n" + source
source = source.replace("sizeof (int)", str(ffi.sizeof("int")))
source = source.replace("sizeof (void *)", str(ffi.sizeof("void*")))
source = source.replace("sizeof (size_t)", str(ffi.sizeof("size_t")))
source = source.replace("sizeof(int32_t)", str(ffi.sizeof("int32_t")))
ffi.cdef(source, override=True)
lib = ffi.dlopen(path_libllama)
return (ffi, lib)
def model_default_params(self, **kwargs):
mparams = self.lib.llama_model_default_params()
for k, v in kwargs.items():
setattr(mparams, k, v)
return mparams
def context_default_params(self, **kwargs):
cparams = self.lib.llama_context_default_params()
for k, v in kwargs.items():
setattr(cparams, k, v)
return cparams
class LibLlamaModel:
def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}):
self.lib: Any = libllama.lib
self.ffi = libllama.ffi
if isinstance(mparams, dict):
mparams = libllama.model_default_params(**mparams)
self.model = self.lib.llama_load_model_from_file(path_model.encode(), mparams)
if not self.model:
raise RuntimeError("error: failed to load model '%s'" % path_model)
if isinstance(cparams, dict):
cparams = libllama.context_default_params(**cparams)
self.ctx = self.lib.llama_new_context_with_model(self.model, cparams)
if not self.ctx:
raise RuntimeError("error: failed to create context for model '%s'" % path_model)
n_tokens_max = self.lib.llama_n_ctx(self.ctx)
self.token_ids = self.ffi.new("llama_token[]", n_tokens_max)
self.text_buff = self.ffi.new("uint8_t[]", 1024)
def free(self):
if self.ctx:
self.lib.llama_free(self.ctx)
if self.model:
self.lib.llama_free_model(self.model)
self.ctx = None
self.model = None
self.lib = None
def tokenize(self, text: str, add_special: bool = False, parse_special: bool = False) -> list[int]:
encoded_text: bytes = text.encode("utf-8")
num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special)
while num < 0 and len(self.token_ids) < (16 << 20):
self.token_ids = self.ffi.new("llama_token[]", -2 * num)
num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special)
return list(self.token_ids[0:num])
def detokenize(self, ids: list[int], remove_special: bool = False, unparse_special: bool = False) -> str:
if len(self.token_ids) < len(ids):
self.token_ids = self.ffi.new("llama_token[]", 2 * len(ids))
for i, id in enumerate(ids):
self.token_ids[i] = id
num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special)
while num < 0 and len(self.text_buff) < (16 << 20):
self.text_buff = self.ffi.new("uint8_t[]", -2 * num)
num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special)
return str(cast(Buffer, self.ffi.buffer(self.text_buff, num)), encoding="utf-8", errors="replace") # replace errors with '\uFFFD'
class Tokenizer:
def encode(self, text: str) -> list[int]:
raise NotImplementedError
def decode(self, ids: list[int]) -> str:
raise NotImplementedError
class TokenizerGroundtruth (Tokenizer):
def __init__(self, dir_tokenizer: str):
self.model: PreTrainedTokenizer = AutoTokenizer.from_pretrained(dir_tokenizer)
# guess BOS and EOS
ids = self.encode("a")
assert 1 <= len(ids) <= 3
add_bos_token = len(ids) > 1 and self.model.bos_token_id == ids[0]
add_eos_token = len(ids) > 1 and self.model.eos_token_id == ids[-1]
self.add_bos_token = getattr(self.model, "add_bos_token", add_bos_token)
self.add_eos_token = getattr(self.model, "add_eos_token", add_eos_token)
# build vocab
tokens = list(self.model.get_vocab().values())
self.vocab = self.model.batch_decode(tokens, skip_special_tokens=True)
self.vocab = list(sorted(self.vocab))
# tokens and lists
self.special_tokens = list(self.model.all_special_tokens)
self.added_tokens = self.model.batch_decode(self.model.added_tokens_encoder.values(), skip_special_tokens=False)
self.bos_token = self.model.bos_token
self.eos_token = self.model.eos_token
def encode(self, text: str) -> list[int]:
return self.model.encode(text, add_special_tokens=True)
def decode(self, ids: list[int]) -> str:
return self.model.decode(ids, skip_special_tokens=False)
class TokenizerLlamaCpp (Tokenizer):
libllama: LibLlama | None = None
def __init__(self, vocab_file: str):
if not self.libllama:
self.libllama = LibLlama()
self.model = LibLlamaModel(self.libllama, vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
def encode(self, text: str) -> list[int]:
return self.model.tokenize(text, add_special=True, parse_special=True)
def decode(self, ids: list[int]) -> str:
return self.model.detokenize(ids, remove_special=False, unparse_special=True)
def generator_custom_text() -> Iterator[str]:
"""General tests"""
yield from [
"",
" ",
" ",
" ",
"\t",
"\n",
"\n\n",
"\n\n\n",
"\t\n",
"Hello world",
" Hello world",
"Hello World",
" Hello World",
" Hello World!",
"Hello, world!",
" Hello, world!",
" this is 🦙.cpp",
"w048 7tuijk dsdfhu",
"нещо на Български",
"កាន់តែពិសេសអាចខលចេញ",
"🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
"Hello",
" Hello",
" Hello",
" Hello",
" Hello",
" Hello\n Hello",
" (",
"\n =",
"' era",
"Hello, y'all! How are you 😁 ?我想在apple工作1314151天",
"3",
"33",
"333",
"3333",
"33333",
"333333",
"3333333",
"33333333",
"333333333",
]
def generator_custom_text_edge_cases() -> Iterator[str]:
"""Edge cases found while debugging"""
yield from [
'\x1f-a', # unicode_ranges_control, {0x00001C, 0x00001F}
'¼-a', # unicode_ranges_digit, 0x00BC
'½-a', # unicode_ranges_digit, 0x00BD
'¾-a', # unicode_ranges_digit, 0x00BE
'a b', # unicode_ranges_digit, 0x3007
'Ⅵ-a', # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms
'\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM)
'Cửa Việt', # llama-3, ignore_merges = true
'<s>a', # Phi-3 fail
'<unk><|endoftext|><s>', # Phi-3 fail
'a\na', # bert fail
'"`', # falcon
' \u2e4e', # falcon
'\n\x0b ', # falcon
'a\xa0\xa0\x00b', # jina-v2-es
'one <mask>', # jina-v2-es <mask> lstrip=true
'a </s> b', # rstrip phi-3
'a <mask> b', # lstrip jina-v2
'\xa0aC', # deepseek
'\u2029 \uA3E4', # deepseek-llm
"a ?",
'', # mpt
'\U000ac517', # utf-8 encode error, falcon
'\U000522f4', # utf-8 encode error, starcoder
"<s><s><unk><s>a<s>b<s>c<unk>d<unk></s>",
"<s> <s> <unk><s>a<s>b<s>c<unk>d<unk></s>",
]
def generator_vocab_words(tokenizer: TokenizerGroundtruth) -> Iterator[str]:
"""Brute force check all vocab words"""
yield from tokenizer.vocab
def generator_ascii_lr_strip() -> Iterator[str]:
WHITESPACES = ["", " ", " "]
CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""]
for char1 in CHARACTERS:
for char2 in CHARACTERS:
for lstrip in WHITESPACES:
for rstrip in WHITESPACES:
yield lstrip + char1 + char2 + rstrip
yield lstrip + char1 + rstrip + char2
yield char1 + lstrip + char2 + rstrip
def generator_apostrophe() -> Iterator[str]:
WHITESPACES = ["", " ", " "]
CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""]
for char1 in CHARACTERS:
for char2 in CHARACTERS:
for lstrip in WHITESPACES:
for rstrip in WHITESPACES:
yield char1 + lstrip + "'" + rstrip + char2
yield char1 + char2 + lstrip + "'" + rstrip + "z"
yield "a" + lstrip + "'" + rstrip + char1 + char2
def generator_added_lr_strip(tokenizer: TokenizerGroundtruth) -> Iterator[str]:
WHITESPACES = ["", " ", " ", "\n", "\r\n", "\n\n", "\t", "\t\t"]
all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens)))
for token in all_tokens:
for lstrip in WHITESPACES:
for rstrip in WHITESPACES:
yield lstrip + token + rstrip
yield "a" + lstrip + token + rstrip
yield lstrip + token + rstrip + "z"
yield "a" + lstrip + token + rstrip + "z"
def generator_random_added_tokens(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"]
all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens + separations)))
rand = random.Random()
for m in range(iterations):
rand.seed(m)
words = rand.choices(all_tokens, k=500)
if words and words[0] == tokenizer.bos_token: # skip spam warning of double BOS
while len(words) > 1 and words[1] == tokenizer.bos_token: # leave one starting BOS
words.pop(0)
if tokenizer.add_bos_token: # drop all starting BOS
words.pop(0)
if words and words[-1] == tokenizer.eos_token: # skip spam warning of double EOS
while len(words) > 1 and words[-2] == tokenizer.eos_token: # leave one trailing EOS
words.pop(-1)
if tokenizer.add_bos_token: # drop all trailing EOS
words.pop(-1)
yield "".join(words)
def generator_random_chars(iterations=100) -> Iterator[str]:
"""Brute force random text with simple characters"""
NUM_WORDS = 400
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
CHARS = list(sorted(set("""
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
ÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛÄËÏÖÜ
áéíóúàèìòùâêîôûäëïöü
.-,*/-+ª!"·$%&/()=?¿[]{}<>\\|@#~½¬~;:_
""")))
rand = random.Random()
for m in range(iterations):
rand.seed(m)
text = []
for _ in range(NUM_WORDS):
k = rand.randint(1, 7)
word = rand.choices(CHARS, k=k)
word.append(rand.choice(WHITESPACES))
text.append("".join(word))
yield "".join(text)
def generator_unicodes() -> Iterator[str]:
"""Iterate unicode characters"""
MAX_CODEPOINTS = 0x30000 # 0x110000
def _valid(cpt):
if cpt >= 0x30000: # unassigned and supplement­ary
return False
# if cpt == 0x2029: # deepseek-llm
# return False
if unicodedata.category(chr(cpt)) in ("Cn", "Cs", "Co"): # undefined, surrogates, private
return False
return True
characters = [chr(cpt) for cpt in range(0, MAX_CODEPOINTS) if _valid(cpt)]
yield from characters
def generator_random_unicodes(iterations=100) -> Iterator[str]:
"""Brute force random text with unicode characters"""
NUM_WORDS = 200
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
characters = list(generator_unicodes())
rand = random.Random()
for m in range(iterations):
rand.seed(m)
text = []
for _ in range(NUM_WORDS):
k = rand.randint(1, 7)
word = rand.choices(characters, k=k)
word.append(rand.choice(WHITESPACES))
text.append("".join(word))
yield "".join(text)
def generator_random_vocab_chars(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
"""Brute force random text with vocab characters"""
vocab_chars = set()
for word in tokenizer.vocab:
vocab_chars.update(word)
vocab_chars = list(sorted(vocab_chars))
rand = random.Random()
for m in range(iterations):
rand.seed(m)
text = rand.choices(vocab_chars, k=1024)
yield "".join(text)
def generator_random_vocab_words(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
"""Brute force random text from vocab words"""
vocab = [w.strip() for w in tokenizer.vocab]
yield from vocab
rand = random.Random()
for m in range(iterations):
rand.seed(m)
text = []
num_words = rand.randint(300, 400)
for i in range(num_words):
k = rand.randint(1, 3)
words = rand.choices(vocab, k=k)
sep = rand.choice(" \n\r\t")
text.append("".join(words) + sep)
yield "".join(text)
def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLlamaCpp, generator: Iterator[str]):
def find_first_mismatch(ids1: list[int] | str, ids2: list[int] | str):
for i, (a, b) in enumerate(zip(ids1, ids2)):
if a != b:
return i
if len(ids1) == len(ids2):
return -1
return min(len(ids1), len(ids2))
def check_detokenizer(text: str, text1: str, text2: str) -> bool:
if text1 == text2: # equal to TokenizerGroundtruth?
return True
# equal to source text?
if tokenizer1.add_bos_token: # remove BOS
if text2.startswith(tokenizer1.bos_token):
text2 = text2[len(tokenizer1.bos_token):]
if tokenizer1.add_eos_token: # remove EOS
if text2.endswith(tokenizer1.eos_token):
text2 = text2[:-len(tokenizer1.eos_token)]
return text == text2
t_encode1 = 0
t_encode2 = 0
t_decode1 = 0
t_decode2 = 0
t_start = time.perf_counter()
encode_errors = 0
decode_errors = 0
MAX_ERRORS = 10
logger.info("%s: %s" % (generator.__qualname__, "ini"))
for text in generator:
# print(repr(text), text.encode())
# print(repr(text), hex(ord(text[0])), text.encode())
t0 = time.perf_counter()
ids1 = tokenizer1.encode(text)
t1 = time.perf_counter()
ids2 = tokenizer2.encode(text)
t2 = time.perf_counter()
text1 = tokenizer1.decode(ids1)
t3 = time.perf_counter()
text2 = tokenizer2.decode(ids1)
t4 = time.perf_counter()
t_encode1 += t1 - t0
t_encode2 += t2 - t1
t_decode1 += t3 - t2
t_decode2 += t4 - t3
if encode_errors < MAX_ERRORS and ids1 != ids2:
i = find_first_mismatch(ids1, ids2)
ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1]
ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1]
logger.error(" Expected: " + str(ids1))
logger.error(" Result: " + str(ids2))
encode_errors += 1
logger.error(f" {encode_errors=}")
if decode_errors < MAX_ERRORS and not check_detokenizer(text, text1, text2):
i = find_first_mismatch(text1, text2)
text1 = list(text1[max(0, i - 2) : i + 5 + 1])
text2 = list(text2[max(0, i - 2) : i + 5 + 1])
logger.error(" Expected: " + " ".join(hex(ord(x)) for x in text1))
logger.error(" Result: " + " ".join(hex(ord(x)) for x in text2))
decode_errors += 1
logger.error(f" {decode_errors=}")
if encode_errors >= MAX_ERRORS and decode_errors >= MAX_ERRORS:
logger.error(f" EXIT: {encode_errors=} {decode_errors=}")
# raise Exception()
break
t_total = time.perf_counter() - t_start
logger.info(f"{generator.__qualname__}: end, {t_encode1=:.3f} {t_encode2=:.3f} {t_decode1=:.3f} {t_decode2=:.3f} {t_total=:.3f}")
def main(argv: list[str] | None = None):
parser = argparse.ArgumentParser()
parser.add_argument("vocab_file", type=str, help="path to vocab 'gguf' file")
parser.add_argument("dir_tokenizer", type=str, help="directory containing 'tokenizer.model' file")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
args = parser.parse_args(argv)
logging.basicConfig(level = logging.DEBUG if args.verbose else logging.INFO)
logger.info(f"VOCABFILE: '{args.vocab_file}'")
tokenizer1 = TokenizerGroundtruth(args.dir_tokenizer)
tokenizer2 = TokenizerLlamaCpp(args.vocab_file)
# compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text())
# compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text_edge_cases())
compare_tokenizers(tokenizer1, tokenizer2, generator_ascii_lr_strip())
compare_tokenizers(tokenizer1, tokenizer2, generator_apostrophe())
compare_tokenizers(tokenizer1, tokenizer2, generator_unicodes())
compare_tokenizers(tokenizer1, tokenizer2, generator_vocab_words(tokenizer1))
compare_tokenizers(tokenizer1, tokenizer2, generator_added_lr_strip(tokenizer1))
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_added_tokens(tokenizer1, 10_000))
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_chars(10_000))
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_unicodes(10_000))
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_chars(tokenizer1, 10_000))
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_words(tokenizer1, 5_000))
tokenizer2.model.free()
if __name__ == "__main__":
# main()
if True:
logging.basicConfig(
level = logging.DEBUG,
format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s",
datefmt = "%Y-%m-%d %H:%M:%S",
filename = logger.name + ".log",
filemode = "a"
)
logging.basicConfig(
level = logging.DEBUG,
format = "%(levelname)s %(message)s",
)
path_tokenizers = Path("./models/tokenizers/")
path_vocab_format = "./models/ggml-vocab-%s.gguf"
tokenizers = [
"llama-spm", # SPM
"phi-3", # SPM
"gemma", # SPM
"gemma-2", # SPM
"baichuan", # SPM
"bert-bge", # WPM
"jina-v2-en", # WPM
"llama-bpe", # BPE
"phi-2", # BPE
"deepseek-llm", # BPE
"deepseek-coder", # BPE
"falcon", # BPE
"mpt", # BPE
"starcoder", # BPE
"gpt-2", # BPE
"stablelm2", # BPE
"refact", # BPE
"qwen2", # BPE
"olmo", # BPE
"jina-v2-es", # BPE
"jina-v2-de", # BPE
"smaug-bpe", # BPE
"poro-chat", # BPE
"jina-v2-code", # BPE
"viking", # BPE
"jais", # BPE
]
logger.info("=" * 50)
for tokenizer in tokenizers:
logger.info("-" * 50)
logger.info(f"TOKENIZER: '{tokenizer}'")
vocab_file = Path(path_vocab_format % tokenizer)
dir_tokenizer = path_tokenizers / tokenizer
main([str(vocab_file), str(dir_tokenizer), "--verbose"])