mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 05:48:47 +01:00
0e89203b51
* sampling : one sequence per sampling context ggml-ci * speculative : add tree-based sampling support ggml-ci * speculative : reuse the n_parallel CLI param * speculative : refactor sampling * examples : fix build after sampling refactoring ggml-ci * batched : fix n_seq_id * sampling : fix malloc ggml-ci * swift : fix build ggml-ci * swift : try to fix build ggml-ci * prompts : add assistant.txt * common : add llama_batch_add() and llama_batch_clear() helpers * speculative : minor refactor ggml-ci * minor : comments + rename ggml-ci * speculative : fix off-by-one for n_drafted * speculative : fix the n_drafted fix + p constants
165 lines
5.4 KiB
C++
165 lines
5.4 KiB
C++
#include "clip.h"
|
|
#include "llava-utils.h"
|
|
#include "common.h"
|
|
#include "llama.h"
|
|
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <vector>
|
|
|
|
static void show_additional_info(int /*argc*/, char ** argv) {
|
|
printf("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
|
printf(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
ggml_time_init();
|
|
|
|
gpt_params params;
|
|
|
|
if (!gpt_params_parse(argc, argv, params)) {
|
|
show_additional_info(argc, argv);
|
|
return 1;
|
|
}
|
|
|
|
if (params.mmproj.empty() || params.image.empty()) {
|
|
gpt_print_usage(argc, argv, params);
|
|
show_additional_info(argc, argv);
|
|
return 1;
|
|
}
|
|
|
|
const char * clip_path = params.mmproj.c_str();
|
|
const char * img_path = params.image.c_str();
|
|
|
|
if (params.prompt.empty()) {
|
|
params.prompt = "describe the image in detail.";
|
|
}
|
|
|
|
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
|
|
|
// load and preprocess the image
|
|
clip_image_u8 img;
|
|
clip_image_f32 img_res;
|
|
|
|
if (!clip_image_load_from_file(img_path, &img)) {
|
|
fprintf(stderr, "%s: is %s really an image file?\n", __func__, img_path);
|
|
|
|
clip_free(ctx_clip);
|
|
return 1;
|
|
}
|
|
|
|
if (!clip_image_preprocess(ctx_clip, &img, &img_res, /*pad2square =*/ true)) {
|
|
fprintf(stderr, "%s: unable to preprocess %s\n", __func__, img_path);
|
|
|
|
clip_free(ctx_clip);
|
|
return 1;
|
|
}
|
|
|
|
int n_img_pos = clip_n_patches(ctx_clip);
|
|
int n_img_embd = clip_n_mmproj_embd(ctx_clip);
|
|
|
|
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip));
|
|
|
|
if (!image_embd) {
|
|
fprintf(stderr, "Unable to allocate memory for image embeddings\n");
|
|
|
|
return 1;
|
|
}
|
|
|
|
const int64_t t_img_enc_start_us = ggml_time_us();
|
|
if (!clip_image_encode(ctx_clip, params.n_threads, &img_res, image_embd)) {
|
|
fprintf(stderr, "Unable to encode image\n");
|
|
|
|
return 1;
|
|
}
|
|
const int64_t t_img_enc_end_us = ggml_time_us();
|
|
|
|
// we get the embeddings, free up the memory required for CLIP
|
|
clip_free(ctx_clip);
|
|
|
|
llama_backend_init(params.numa);
|
|
|
|
llama_model_params model_params = llama_model_default_params();
|
|
model_params.n_gpu_layers = params.n_gpu_layers;
|
|
model_params.main_gpu = params.main_gpu;
|
|
model_params.tensor_split = params.tensor_split;
|
|
model_params.use_mmap = params.use_mmap;
|
|
model_params.use_mlock = params.use_mlock;
|
|
|
|
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
|
if (model == NULL) {
|
|
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
|
return 1;
|
|
}
|
|
|
|
llama_context_params ctx_params = llama_context_default_params();
|
|
|
|
ctx_params.n_ctx = params.n_ctx < 2048 ? 2048 : params.n_ctx; // we need a longer context size to process image embeddings
|
|
ctx_params.n_threads = params.n_threads;
|
|
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
|
ctx_params.seed = params.seed;
|
|
|
|
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
|
|
|
if (ctx_llama == NULL) {
|
|
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
|
return 1;
|
|
}
|
|
|
|
// make sure that the correct mmproj was used, i.e., compare apples to apples
|
|
const int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
|
|
|
|
if (n_img_embd != n_llama_embd) {
|
|
printf("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_img_embd, n_llama_embd);
|
|
|
|
llama_free(ctx_llama);
|
|
llama_free_model(model);
|
|
llama_backend_free();
|
|
free(image_embd);
|
|
|
|
return 1;
|
|
}
|
|
|
|
// process the prompt
|
|
// llava chat format is "<system_prompt>USER: <image_embeddings>\n<textual_prompt>\nASSISTANT:"
|
|
|
|
int n_past = 0;
|
|
|
|
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
|
|
|
|
eval_string(ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:", params.n_batch, &n_past, true);
|
|
eval_image_embd(ctx_llama, image_embd, n_img_pos, params.n_batch, &n_past);
|
|
eval_string(ctx_llama, (params.prompt + "\nASSISTANT:").c_str(), params.n_batch, &n_past, false);
|
|
|
|
// generate the response
|
|
|
|
printf("\n");
|
|
printf("prompt: '%s'\n", params.prompt.c_str());
|
|
printf("\n");
|
|
|
|
for (int i = 0; i < max_tgt_len; i++) {
|
|
const char * tmp = sample(ctx_llama, params, &n_past);
|
|
if (strcmp(tmp, "</s>") == 0) break;
|
|
|
|
printf("%s", tmp);
|
|
fflush(stdout);
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
{
|
|
const float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
|
|
|
|
printf("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / n_img_pos);
|
|
}
|
|
|
|
llama_print_timings(ctx_llama);
|
|
|
|
llama_free(ctx_llama);
|
|
llama_free_model(model);
|
|
llama_backend_free();
|
|
free(image_embd);
|
|
|
|
return 0;
|
|
}
|