mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-23 18:09:18 +01:00
6381d4e110
* gguf : first API pass
* gguf : read header + meta data
* gguf : read tensor info
* gguf : initial model loading - not tested
* gguf : add gguf_get_tensor_name()
* gguf : do not support passing existing ggml_context to gguf_init
* gguf : simplify gguf_get_val
* gguf : gguf.c is now part of ggml.c
* gguf : read / write sample models
* gguf : add comments
* refactor : reduce code duplication and better API (#2415)
* gguf : expose the gguf_type enum through the API for now
* gguf : add array support
* gguf.py : some code style changes
* convert.py : start a new simplified implementation by removing old stuff
* convert.py : remove GGML vocab + other obsolete stuff
* GGUF : write tensor (#2426)
* WIP: Write tensor
* GGUF : Support writing tensors in Python
* refactor : rm unused import and upd todos
* fix : fix errors upd writing example
* rm example.gguf
* gitignore *.gguf
* undo formatting
* gguf : add gguf_find_key (#2438)
* gguf.cpp : find key example
* ggml.h : add gguf_find_key
* ggml.c : add gguf_find_key
* gguf : fix writing tensors
* gguf : do not hardcode tensor names to read
* gguf : write sample tensors to read
* gguf : add tokenization constants
* quick and dirty conversion example
* gguf : fix writing gguf arrays
* gguf : write tensors one by one and code reuse
* gguf : fix writing gguf arrays
* gguf : write tensors one by one
* gguf : write tensors one by one
* gguf : write tokenizer data
* gguf : upd gguf conversion script
* Update convert-llama-h5-to-gguf.py
* gguf : handle already encoded string
* ggml.h : get array str and f32
* ggml.c : get arr str and f32
* gguf.py : support any type
* Update convert-llama-h5-to-gguf.py
* gguf : fix set is not subscriptable
* gguf : update convert-llama-h5-to-gguf.py
* constants.py : add layer norm eps
* gguf.py : add layer norm eps and merges
* ggml.h : increase GGML_MAX_NAME to 64
* ggml.c : add gguf_get_arr_n
* Update convert-llama-h5-to-gguf.py
* add gptneox gguf example
* Makefile : add gptneox gguf example
* Update convert-llama-h5-to-gguf.py
* add gptneox gguf example
* Update convert-llama-h5-to-gguf.py
* Update convert-gptneox-h5-to-gguf.py
* Update convert-gptneox-h5-to-gguf.py
* Update convert-llama-h5-to-gguf.py
* gguf : support custom alignment value
* gguf : fix typo in function call
* gguf : mmap tensor data example
* fix : update convert-llama-h5-to-gguf.py
* Update convert-llama-h5-to-gguf.py
* convert-gptneox-h5-to-gguf.py : Special tokens
* gptneox-main.cpp : special tokens
* Update gptneox-main.cpp
* constants.py : special tokens
* gguf.py : accumulate kv and tensor info data + special tokens
* convert-gptneox-h5-to-gguf.py : accumulate kv and ti + special tokens
* gguf : gguf counterpart of llama-util.h
* gguf-util.h : update note
* convert-llama-h5-to-gguf.py : accumulate kv / ti + special tokens
* convert-llama-h5-to-gguf.py : special tokens
* Delete gptneox-common.cpp
* Delete gptneox-common.h
* convert-gptneox-h5-to-gguf.py : gpt2bpe tokenizer
* gptneox-main.cpp : gpt2 bpe tokenizer
* gpt2 bpe tokenizer (handles merges and unicode)
* Makefile : remove gptneox-common
* gguf.py : bytesarray for gpt2bpe tokenizer
* cmpnct_gpt2bpe.hpp : comments
* gguf.py : use custom alignment if present
* gguf : minor stuff
* Update gptneox-main.cpp
* map tensor names
* convert-gptneox-h5-to-gguf.py : map tensor names
* convert-llama-h5-to-gguf.py : map tensor names
* gptneox-main.cpp : map tensor names
* gguf : start implementing libllama in GGUF (WIP)
* gguf : start implementing libllama in GGUF (WIP)
* rm binary commited by mistake
* upd .gitignore
* gguf : calculate n_mult
* gguf : inference with 7B model working (WIP)
* gguf : rm deprecated function
* gguf : start implementing gguf_file_saver (WIP)
* gguf : start implementing gguf_file_saver (WIP)
* gguf : start implementing gguf_file_saver (WIP)
* gguf : add gguf_get_kv_type
* gguf : add gguf_get_kv_type
* gguf : write metadata in gguf_file_saver (WIP)
* gguf : write metadata in gguf_file_saver (WIP)
* gguf : write metadata in gguf_file_saver
* gguf : rm references to old file formats
* gguf : shorter name for member variable
* gguf : rm redundant method
* gguf : get rid of n_mult, read n_ff from file
* Update gguf_tensor_map.py
* Update gptneox-main.cpp
* gguf : rm references to old file magics
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : quantization is working
* gguf : roper closing of file
* gguf.py : no need to convert tensors twice
* convert-gptneox-h5-to-gguf.py : no need to convert tensors twice
* convert-llama-h5-to-gguf.py : no need to convert tensors twice
* convert-gptneox-h5-to-gguf.py : simplify nbytes
* convert-llama-h5-to-gguf.py : simplify nbytes
* gptneox-main.cpp : n_layer --> n_block
* constants.py : n_layer --> n_block
* gguf.py : n_layer --> n_block
* convert-gptneox-h5-to-gguf.py : n_layer --> n_block
* convert-llama-h5-to-gguf.py : n_layer --> n_block
* gptneox-main.cpp : n_layer --> n_block
* Update gguf_tensor_map.py
* convert-gptneox-h5-to-gguf.py : load model in parts to save memory
* convert-llama-h5-to-gguf.py : load model in parts to save memory
* convert : write more metadata for LLaMA
* convert : rm quantization version
* convert-gptneox-h5-to-gguf.py : add file_type key
* gptneox-main.cpp : add file_type key
* fix conflicts
* gguf : add todos and comments
* convert-gptneox-h5-to-gguf.py : tensor name map changes
* Create gguf_namemap.py : tensor name map changes
* Delete gguf_tensor_map.py
* gptneox-main.cpp : tensor name map changes
* convert-llama-h5-to-gguf.py : fixes
* gguf.py : dont add empty strings
* simple : minor style changes
* gguf : use UNIX line ending
* Create convert-llama-7b-pth-to-gguf.py
* llama : sync gguf-llama.cpp with latest llama.cpp (#2608)
* llama : sync gguf-llama.cpp with latest llama.cpp
* minor : indentation + assert
* llama : refactor gguf_buffer and gguf_ctx_buffer
* llama : minor
* gitignore : add gptneox-main
* llama : tokenizer fixes (#2549)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* convert : update convert-new.py with tokenizer fixes (#2614)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* llama : sync gguf-llama with llama (#2613)
* llama : sync gguf-llama with llama
* tests : fix build + warnings (test-tokenizer-1 still fails)
* tests : fix wstring_convert
* convert : fix layer names
* llama : sync gguf-llama.cpp
* convert : update HF converter to new tokenizer voodoo magics
* llama : update tokenizer style
* convert-llama-h5-to-gguf.py : add token types
* constants.py : add token types
* gguf.py : add token types
* convert-llama-7b-pth-to-gguf.py : add token types
* gguf-llama.cpp : fix n_head_kv
* convert-llama-h5-to-gguf.py : add 70b gqa support
* gguf.py : add tensor data layout
* convert-llama-h5-to-gguf.py : add tensor data layout
* convert-llama-7b-pth-to-gguf.py : add tensor data layout
* gptneox-main.cpp : add tensor data layout
* convert-llama-h5-to-gguf.py : clarify the reverse permute
* llama : refactor model loading code (#2620)
* llama : style formatting + remove helper methods
* llama : fix quantization using gguf tool
* llama : simplify gguf_file_saver
* llama : fix method names
* llama : simplify write_header()
* llama : no need to pass full file loader to the file saver
just gguf_ctx
* llama : gguf_file_saver write I32
* llama : refactor tensor names (#2622)
* gguf: update tensor names searched in quantization
* gguf : define tensor names as constants
* gguf : initial write API (not tested yet)
* gguf : write to file API (not tested)
* gguf : initial write API ready + example
* gguf : fix header write
* gguf : fixes + simplify example + add ggml_nbytes_pad()
* gguf : minor
* llama : replace gguf_file_saver with new gguf write API
* gguf : streaming support when writing files
* gguf : remove oboslete write methods
* gguf : remove obosolete gguf_get_arr_xxx API
* llama : simplify gguf_file_loader
* llama : move hparams and vocab from gguf_file_loader to llama_model_loader
* llama : merge gguf-util.h in llama.cpp
* llama : reorder definitions in .cpp to match .h
* llama : minor simplifications
* llama : refactor llama_model_loader (WIP)
wip : remove ggml_ctx from llama_model_loader
wip : merge gguf_file_loader in llama_model_loader
* llama : fix shape prints
* llama : fix Windows build + fix norm_rms_eps key
* llama : throw error on missing KV paris in model meta data
* llama : improve printing + log meta data
* llama : switch print order of meta data
---------
Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
* gguf : deduplicate (#2629)
* gguf : better type names
* dedup : CPU + Metal is working
* ggml : fix warnings about unused results
* llama.cpp : fix line feed and compiler warning
* llama : fix strncpy warning + note token_to_str does not write null
* llama : restore the original load/save session implementation
Will migrate this to GGUF in the future
* convert-llama-h5-to-gguf.py : support alt ctx param name
* ggml : assert when using ggml_mul with non-F32 src1
* examples : dedup simple
---------
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
* gguf.py : merge all files in gguf.py
* convert-new.py : pick #2427 for HF 70B support
* examples/gguf : no need to keep q option for quantization any more
* llama.cpp : print actual model size
* llama.cpp : use ggml_elements()
* convert-new.py : output gguf (#2635)
* convert-new.py : output gguf (WIP)
* convert-new.py : add gguf key-value pairs
* llama : add hparams.ctx_train + no longer print ftype
* convert-new.py : minor fixes
* convert-new.py : vocab-only option should work now
* llama : fix tokenizer to use llama_char_to_byte
* tests : add new ggml-vocab-llama.gguf
* convert-new.py : tensor name mapping
* convert-new.py : add map for skipping tensor serialization
* convert-new.py : convert script now works
* gguf.py : pick some of the refactoring from #2644
* convert-new.py : minor fixes
* convert.py : update to support GGUF output
* Revert "ci : disable CI temporary to not waste energy"
This reverts commit 7e82d25f40
.
* convert.py : n_head_kv optional and .gguf file extension
* convert.py : better always have n_head_kv and default it to n_head
* llama : sync with recent PRs on master
* editorconfig : ignore models folder
ggml-ci
* ci : update ".bin" to ".gguf" extension
ggml-ci
* llama : fix llama_model_loader memory leak
* gptneox : move as a WIP example
* llama : fix lambda capture
ggml-ci
* ggml : fix bug in gguf_set_kv
ggml-ci
* common.h : .bin --> .gguf
* quantize-stats.cpp : .bin --> .gguf
* convert.py : fix HF tensor permuting / unpacking
ggml-ci
* llama.cpp : typo
* llama : throw error if gguf fails to init from file
ggml-ci
* llama : fix tensor name grepping during quantization
ggml-ci
* gguf.py : write tensors in a single pass (#2644)
* gguf : single pass for writing tensors + refactoring writer
* gguf : single pass for writing tensors + refactoring writer
* gguf : single pass for writing tensors + refactoring writer
* gguf : style fixes in simple conversion script
* gguf : refactor gptneox conversion script
* gguf : rename h5 to hf (for HuggingFace)
* gguf : refactor pth to gguf conversion script
* gguf : rm file_type key and method
* gguf.py : fix vertical alignment
* gguf.py : indentation
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* convert-gptneox-hf-to-gguf.py : fixes
* gguf.py : gptneox mapping
* convert-llama-hf-to-gguf.py : fixes
* convert-llama-7b-pth-to-gguf.py : fixes
* ggml.h : reverse GGUF_MAGIC
* gguf.py : reverse GGUF_MAGIC
* test-tokenizer-0.cpp : fix warning
* llama.cpp : print kv general.name
* llama.cpp : get special token kv and linefeed token id
* llama : print number of tensors per type + print arch + style
* tests : update vocab file with new magic
* editorconfig : fix whitespaces
* llama : re-order functions
* llama : remove C++ API + reorganize common source in /common dir
* llama : minor API updates
* llama : avoid hardcoded special tokens
* llama : fix MPI build
ggml-ci
* llama : introduce enum llama_vocab_type + remove hardcoded string constants
* convert-falcon-hf-to-gguf.py : falcon HF --> gguf conversion, not tested
* falcon-main.cpp : falcon inference example
* convert-falcon-hf-to-gguf.py : remove extra kv
* convert-gptneox-hf-to-gguf.py : remove extra kv
* convert-llama-7b-pth-to-gguf.py : remove extra kv
* convert-llama-hf-to-gguf.py : remove extra kv
* gguf.py : fix for falcon 40b
* falcon-main.cpp : fix for falcon 40b
* convert-falcon-hf-to-gguf.py : update ref
* convert-falcon-hf-to-gguf.py : add tensor data layout
* cmpnct_gpt2bpe.hpp : fixes
* falcon-main.cpp : fixes
* gptneox-main.cpp : fixes
* cmpnct_gpt2bpe.hpp : remove non-general stuff
* Update examples/server/README.md
Co-authored-by: slaren <slarengh@gmail.com>
* cmpnct_gpt2bpe.hpp : cleanup
* convert-llama-hf-to-gguf.py : special tokens
* convert-llama-7b-pth-to-gguf.py : special tokens
* convert-permute-debug.py : permute debug print
* convert-permute-debug-master.py : permute debug for master
* convert-permute-debug.py : change permute type of attn_q
* convert.py : 70b model working (change attn_q permute)
* Delete convert-permute-debug-master.py
* Delete convert-permute-debug.py
* convert-llama-hf-to-gguf.py : fix attn_q permute
* gguf.py : fix rope scale kv
* convert-llama-hf-to-gguf.py : rope scale and added tokens
* convert-llama-7b-pth-to-gguf.py : rope scale and added tokens
* llama.cpp : use rope scale kv
* convert-llama-7b-pth-to-gguf.py : rope scale fix
* convert-llama-hf-to-gguf.py : rope scale fix
* py : fix whitespace
* gguf : add Python script to convert GGMLv3 LLaMA models to GGUF (#2682)
* First pass at converting GGMLv3 LLaMA models to GGUF
* Cleanups, better output during conversion
* Fix vocab space conversion logic
* More vocab conversion fixes
* Add description to converted GGUF files
* Improve help text, expand warning
* Allow specifying name and description for output GGUF
* Allow overriding vocab and hyperparams from original model metadata
* Use correct params override var name
* Fix wrong type size for Q8_K
Better handling of original style metadata
* Set default value for gguf add_tensor raw_shape KW arg
* llama : improve token type support (#2668)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* Improved tokenizer test
But does it work on MacOS?
* Improve token type support
- Added @klosax code to convert.py
- Improved token type support in vocabulary
* Exclude platform dependent tests
* More sentencepiece compatibility by eliminating magic numbers
* Restored accidentally removed comment
* llama : add API for token type
ggml-ci
* tests : use new tokenizer type API (#2692)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* Improved tokenizer test
But does it work on MacOS?
* Improve token type support
- Added @klosax code to convert.py
- Improved token type support in vocabulary
* Exclude platform dependent tests
* More sentencepiece compatibility by eliminating magic numbers
* Restored accidentally removed comment
* Improve commentary
* Use token type API in test-tokenizer-1.cpp
* py : cosmetics
* readme : add notice about new file format
ggml-ci
---------
Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
Co-authored-by: goerch <jhr.walter@t-online.de>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
328 lines
10 KiB
Python
328 lines
10 KiB
Python
# HF llama --> gguf conversion
|
|
|
|
import gguf
|
|
import os
|
|
import sys
|
|
import struct
|
|
import json
|
|
import numpy as np
|
|
import torch
|
|
|
|
from typing import Any, List, Optional
|
|
from pathlib import Path
|
|
from sentencepiece import SentencePieceProcessor
|
|
|
|
#NDArray = np.ndarray[Any, Any]
|
|
# compatible with python < 3.9
|
|
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
|
|
|
|
# reverse HF permute back to original pth layout
|
|
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
|
|
|
|
|
|
def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray:
|
|
if n_kv_head is not None and n_head != n_kv_head:
|
|
n_head //= n_kv_head
|
|
|
|
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
|
.swapaxes(1, 2)
|
|
.reshape(weights.shape))
|
|
|
|
|
|
def count_model_parts(dir_model: str) -> int:
|
|
num_parts = 0
|
|
|
|
for filename in os.listdir(dir_model):
|
|
if filename.startswith("pytorch_model-"):
|
|
num_parts += 1
|
|
|
|
if num_parts > 0:
|
|
print("gguf: found " + str(num_parts) + " model parts")
|
|
|
|
return num_parts
|
|
|
|
|
|
if len(sys.argv) < 3:
|
|
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
|
|
print(" ftype == 0 -> float32")
|
|
print(" ftype == 1 -> float16")
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
# output in the same directory as the model
|
|
dir_model = sys.argv[1]
|
|
last_dir = os.path.basename(os.path.normpath(dir_model))
|
|
|
|
|
|
# possible tensor data types
|
|
# ftype == 0 -> float32
|
|
# ftype == 1 -> float16
|
|
|
|
|
|
# map from ftype to string
|
|
ftype_str = ["f32", "f16"]
|
|
|
|
ftype = 1
|
|
if len(sys.argv) > 2:
|
|
ftype = int(sys.argv[2])
|
|
if ftype < 0 or ftype > 1:
|
|
print("Invalid ftype: " + str(ftype))
|
|
|
|
sys.exit(1)
|
|
|
|
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
|
|
|
|
print("gguf: loading model "+last_dir)
|
|
|
|
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
|
hparams = json.load(f)
|
|
|
|
if hparams["architectures"][0] != "LlamaForCausalLM":
|
|
print("Model architecture not supported: " + hparams["architectures"][0])
|
|
|
|
sys.exit()
|
|
|
|
# get number of model parts
|
|
num_parts = count_model_parts(dir_model)
|
|
|
|
ARCH=gguf.MODEL_ARCH.LLAMA
|
|
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
|
|
|
print("gguf: get model metadata")
|
|
|
|
block_count = hparams["num_hidden_layers"]
|
|
head_count = hparams["num_attention_heads"]
|
|
|
|
if "num_key_value_heads" in hparams:
|
|
head_count_kv = hparams["num_key_value_heads"]
|
|
else:
|
|
head_count_kv = head_count
|
|
|
|
if "_name_or_path" in hparams:
|
|
hf_repo = hparams["_name_or_path"]
|
|
else:
|
|
hf_repo = ""
|
|
|
|
if "max_sequence_length" in hparams:
|
|
ctx_length = hparams["max_sequence_length"]
|
|
elif "max_position_embeddings" in hparams:
|
|
ctx_length = hparams["max_position_embeddings"]
|
|
else:
|
|
print("gguf: can not find ctx length parameter.")
|
|
|
|
sys.exit()
|
|
|
|
|
|
gguf_writer.add_name(last_dir)
|
|
gguf_writer.add_source_hf_repo(hf_repo)
|
|
gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
|
gguf_writer.add_context_length(ctx_length)
|
|
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
|
gguf_writer.add_block_count(block_count)
|
|
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
|
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
|
|
gguf_writer.add_head_count(head_count)
|
|
gguf_writer.add_head_count_kv(head_count_kv)
|
|
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
|
|
|
|
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
|
|
if "type" in hparams["rope_scaling"]:
|
|
if hparams["rope_scaling"]["type"] == "linear":
|
|
gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
|
|
|
|
|
|
# TOKENIZATION
|
|
|
|
print("gguf: get tokenizer metadata")
|
|
|
|
tokens: List[bytes] = []
|
|
scores: List[float] = []
|
|
toktypes: List[int] = []
|
|
|
|
if Path(dir_model + "/tokenizer.model").is_file():
|
|
# vocab type sentencepiece
|
|
print("gguf: get sentencepiece tokenizer vocab, scores and token types")
|
|
|
|
tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
|
|
|
|
for i in range(tokenizer.vocab_size()):
|
|
text: bytes
|
|
score: float
|
|
|
|
piece = tokenizer.id_to_piece(i)
|
|
text = piece.encode("utf-8")
|
|
score = tokenizer.get_score(i)
|
|
|
|
toktype = 1 # defualt to normal token type
|
|
if tokenizer.is_unknown(i):
|
|
toktype = 2
|
|
if tokenizer.is_control(i):
|
|
toktype = 3
|
|
|
|
# toktype = 4 is user-defined = tokens from added_tokens.json
|
|
|
|
if tokenizer.is_unused(i):
|
|
toktype = 5
|
|
if tokenizer.is_byte(i):
|
|
toktype = 6
|
|
|
|
tokens.append(text)
|
|
scores.append(score)
|
|
toktypes.append(toktype)
|
|
|
|
if Path(dir_model + "/added_tokens.json").is_file():
|
|
with open(dir_model + "/added_tokens.json", "r", encoding="utf-8") as f:
|
|
addtokens_json = json.load(f)
|
|
|
|
print("gguf: get added tokens")
|
|
|
|
for key in addtokens_json:
|
|
tokens.append( key.encode("utf-8") )
|
|
scores.append(-1000.0)
|
|
toktypes.append(4) # user-defined token type
|
|
|
|
|
|
gguf_writer.add_tokenizer_model("llama")
|
|
gguf_writer.add_token_list(tokens)
|
|
gguf_writer.add_token_scores(scores)
|
|
gguf_writer.add_token_types(toktypes)
|
|
|
|
|
|
print("gguf: get special token ids")
|
|
|
|
if Path(dir_model + "/tokenizer.json").is_file():
|
|
# Look for special tokens in tokenizer.json if it exists
|
|
|
|
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
|
|
tokenizer = json.load(f)
|
|
|
|
if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
|
|
|
|
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
|
|
tokenizer_config = json.load(f)
|
|
|
|
if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None:
|
|
for key in tokenizer["added_tokens"]:
|
|
if key["content"] == tokenizer_config["bos_token"]["content"]:
|
|
gguf_writer.add_bos_token_id(key["id"])
|
|
|
|
if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None:
|
|
for key in tokenizer["added_tokens"]:
|
|
if key["content"] == tokenizer_config["eos_token"]["content"]:
|
|
gguf_writer.add_eos_token_id(key["id"])
|
|
|
|
if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None:
|
|
for key in tokenizer["added_tokens"]:
|
|
if key["content"] == tokenizer_config["unk_token"]["content"]:
|
|
gguf_writer.add_unk_token_id(key["id"])
|
|
|
|
if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None:
|
|
for key in tokenizer["added_tokens"]:
|
|
if key["content"] == tokenizer_config["sep_token"]["content"]:
|
|
gguf_writer.add_sep_token_id(key["id"])
|
|
|
|
if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None:
|
|
for key in tokenizer["added_tokens"]:
|
|
if key["content"] == tokenizer_config["pad_token"]["content"]:
|
|
gguf_writer.add_pad_token_id(key["id"])
|
|
else:
|
|
# If no tokenizer.json: Look for special tokens in config.json
|
|
|
|
if "bos_token_id" in hparams and hparams["bos_token_id"] != None:
|
|
gguf_writer.add_bos_token_id(hparams["bos_token_id"])
|
|
|
|
if "eos_token_id" in hparams and hparams["eos_token_id"] != None:
|
|
gguf_writer.add_eos_token_id(hparams["eos_token_id"])
|
|
|
|
if "unk_token_id" in hparams and hparams["unk_token_id"] != None:
|
|
gguf_writer.add_unk_token_id(hparams["unk_token_id"])
|
|
|
|
if "sep_token_id" in hparams and hparams["sep_token_id"] != None:
|
|
gguf_writer.add_sep_token_id(hparams["sep_token_id"])
|
|
|
|
if "pad_token_id" in hparams and hparams["pad_token_id"] != None:
|
|
gguf_writer.add_pad_token_id(hparams["pad_token_id"])
|
|
|
|
|
|
# TENSORS
|
|
|
|
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
|
|
|
# tensor info
|
|
print("gguf: get tensor metadata")
|
|
|
|
if num_parts == 0:
|
|
part_names = ("pytorch_model.bin",)
|
|
else:
|
|
part_names = (
|
|
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
|
)
|
|
|
|
for part_name in part_names:
|
|
print("gguf: loading model part '" + part_name + "'")
|
|
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
|
|
|
for name in model_part.keys():
|
|
data = model_part[name]
|
|
|
|
# we don't need these
|
|
if name.endswith(".rotary_emb.inv_freq"):
|
|
continue
|
|
|
|
old_dtype = data.dtype
|
|
|
|
# convert any unsupported data types to float32
|
|
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
|
data = data.to(torch.float32)
|
|
|
|
data = data.squeeze().numpy()
|
|
|
|
# reverse permute these
|
|
if name.endswith(".q_proj.weight"):
|
|
data = reverse_hf_permute(data, head_count)
|
|
if name.endswith(".k_proj.weight"):
|
|
data = reverse_hf_permute(data, head_count, head_count_kv)
|
|
|
|
# map tensor names
|
|
if name.endswith(".weight") and name[:-7] in tensor_map:
|
|
name = tensor_map[name[:-7]] + ".weight"
|
|
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
|
name = tensor_map[name[:-5]] + ".bias"
|
|
else:
|
|
print("Can not map tensor '" + name + "'")
|
|
sys.exit()
|
|
|
|
n_dims = len(data.shape)
|
|
data_dtype = data.dtype
|
|
|
|
# if f32 desired, convert any float16 to float32
|
|
if ftype == 0 and data_dtype == np.float16:
|
|
data = data.astype(np.float32)
|
|
|
|
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
|
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
|
data = data.astype(np.float32)
|
|
|
|
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
|
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
|
data = data.astype(np.float16)
|
|
|
|
print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
|
|
|
gguf_writer.add_tensor(name, data)
|
|
|
|
|
|
print("gguf: write header")
|
|
gguf_writer.write_header_to_file()
|
|
print("gguf: write metadata")
|
|
gguf_writer.write_kv_data_to_file()
|
|
print("gguf: write tensors")
|
|
gguf_writer.write_tensors_to_file()
|
|
|
|
gguf_writer.close()
|
|
|
|
|
|
print("gguf: model successfully exported to '" + fname_out + "'")
|
|
print("")
|