mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 04:50:26 +01:00
7082d24cec
* initial commit, going through initializations * main loop finished, starting to debug * BUG: generates gibberish/repeating tokens after a while * kv_cache management * Added colors to distinguish drafted tokens (--color). Updated README * lookup : fix token positions in the draft batch * lookup : use n_draft from CLI params * lookup : final touches --------- Co-authored-by: Leon Ericsson <leon.ericsson@icloud.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
231 lines
6.8 KiB
C++
231 lines
6.8 KiB
C++
#include "common.h"
|
|
#include "llama.h"
|
|
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
int main(int argc, char ** argv){
|
|
gpt_params params;
|
|
|
|
if (!gpt_params_parse(argc, argv, params)) {
|
|
return 1;
|
|
}
|
|
|
|
// max/min n-grams size to search for in prompt
|
|
const int ngram_max = 4;
|
|
const int ngram_min = 1;
|
|
|
|
// length of the candidate / draft sequence, if match is found
|
|
const int n_draft = params.n_draft;
|
|
|
|
const bool dump_kv_cache = params.dump_kv_cache;
|
|
|
|
#ifndef LOG_DISABLE_LOGS
|
|
log_set_target(log_filename_generator("lookup", "log"));
|
|
LOG_TEE("Log start\n");
|
|
log_dump_cmdline(argc, argv);
|
|
#endif // LOG_DISABLE_LOGS
|
|
|
|
// init llama.cpp
|
|
llama_backend_init(params.numa);
|
|
|
|
llama_model * model = NULL;
|
|
llama_context * ctx = NULL;
|
|
|
|
// load the model
|
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
|
|
|
// tokenize the prompt
|
|
const bool add_bos = llama_should_add_bos_token(model);
|
|
LOG("add_bos tgt: %d\n", add_bos);
|
|
|
|
std::vector<llama_token> inp;
|
|
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
|
|
|
const int max_context_size = llama_n_ctx(ctx);
|
|
const int max_tokens_list_size = max_context_size - 4;
|
|
|
|
if ((int) inp.size() > max_tokens_list_size) {
|
|
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
|
|
return 1;
|
|
}
|
|
|
|
fprintf(stderr, "\n\n");
|
|
|
|
for (auto id : inp) {
|
|
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
|
|
}
|
|
|
|
fflush(stderr);
|
|
|
|
const int n_input = inp.size();
|
|
|
|
const auto t_enc_start = ggml_time_us();
|
|
|
|
llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
|
|
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
|
|
|
|
const auto t_enc_end = ggml_time_us();
|
|
|
|
int n_predict = 0;
|
|
int n_drafted = 0;
|
|
int n_accept = 0;
|
|
|
|
int n_past = inp.size();
|
|
|
|
bool has_eos = false;
|
|
|
|
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
|
|
|
|
std::vector<llama_token> draft;
|
|
|
|
llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1);
|
|
|
|
// debug
|
|
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, 1);
|
|
|
|
const auto t_dec_start = ggml_time_us();
|
|
|
|
while (true) {
|
|
// debug
|
|
if (dump_kv_cache) {
|
|
llama_kv_cache_view_update(ctx, &kvc_view);
|
|
dump_kv_cache_view_seqs(kvc_view, 40);
|
|
}
|
|
|
|
// print current draft sequence
|
|
LOG("drafted %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, draft).c_str());
|
|
|
|
int i_dft = 0;
|
|
while (true) {
|
|
// sample from the target model
|
|
llama_token id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_dft);
|
|
|
|
llama_sampling_accept(ctx_sampling, ctx, id, true);
|
|
|
|
const std::string token_str = llama_token_to_piece(ctx, id);
|
|
|
|
if (!params.use_color) {
|
|
printf("%s", token_str.c_str());
|
|
}
|
|
|
|
if (id == llama_token_eos(model)) {
|
|
has_eos = true;
|
|
}
|
|
|
|
++n_predict;
|
|
|
|
// check if the target token matches the draft
|
|
if (i_dft < (int) draft.size() && id == draft[i_dft]) {
|
|
LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
|
|
++n_accept;
|
|
++n_past;
|
|
++i_dft;
|
|
inp.push_back(id);
|
|
|
|
if (params.use_color) {
|
|
// color accepted draft token
|
|
printf("\033[34m%s\033[0m", token_str.c_str());
|
|
fflush(stdout);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (params.use_color) {
|
|
printf("%s", token_str.c_str());
|
|
}
|
|
fflush(stdout);
|
|
|
|
|
|
LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
|
|
|
|
draft.clear();
|
|
draft.push_back(id);
|
|
inp.push_back(id);
|
|
break;
|
|
}
|
|
|
|
if ((params.n_predict > 0 && n_predict > params.n_predict) || has_eos) {
|
|
break;
|
|
}
|
|
|
|
// KV cache management
|
|
// clean the cache of draft tokens that weren't accepted
|
|
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
|
|
|
|
llama_batch_clear(batch_tgt);
|
|
llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
|
|
|
|
// generate n_pred tokens through prompt lookup
|
|
auto prompt_lookup = [&]() -> void {
|
|
int inp_size = inp.size();
|
|
for (int ngram_size = ngram_max ; ngram_size > ngram_min; --ngram_size){
|
|
const llama_token * ngram = &inp[inp_size - ngram_size];
|
|
|
|
for (int i = 0; i <= (int) inp_size - (ngram_size * 2); ++i) {
|
|
bool match = true;
|
|
for (int j = 0; j < ngram_size; ++j) {
|
|
if (inp[i + j] != ngram[j]) {
|
|
match = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (match) {
|
|
const int startIdx = i + ngram_size;
|
|
const int endIdx = startIdx + n_draft;
|
|
if (endIdx < inp_size) {
|
|
for (int j = startIdx; j < endIdx; ++j) {
|
|
LOG(" - draft candidate %d: %d\n", j, inp[j]);
|
|
draft.push_back(inp[j]);
|
|
llama_batch_add(batch_tgt, inp[j], n_past + (j - startIdx) + 1, { 0 }, true);
|
|
++n_drafted;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
};
|
|
|
|
prompt_lookup();
|
|
|
|
llama_decode(ctx, batch_tgt);
|
|
++n_past;
|
|
|
|
draft.erase(draft.begin());
|
|
}
|
|
|
|
auto t_dec_end = ggml_time_us();
|
|
|
|
LOG_TEE("\n\n");
|
|
|
|
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
|
|
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
|
|
|
LOG_TEE("\n");
|
|
LOG_TEE("n_draft = %d\n", n_draft);
|
|
LOG_TEE("n_predict = %d\n", n_predict);
|
|
LOG_TEE("n_drafted = %d\n", n_drafted);
|
|
LOG_TEE("n_accept = %d\n", n_accept);
|
|
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
|
|
|
|
LOG_TEE("\ntarget:\n");
|
|
llama_print_timings(ctx);
|
|
|
|
llama_sampling_free(ctx_sampling);
|
|
llama_batch_free(batch_tgt);
|
|
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
|
|
llama_backend_free();
|
|
|
|
fprintf(stderr, "\n\n");
|
|
|
|
return 0;
|
|
}
|