llama.cpp/examples/simple-chat/simple-chat.cpp
Olivier Chafik 6171c9d258
Add Jinja template support (#11016)
* Copy minja from 58f0ca6dd7

* Add --jinja and --chat-template-file flags

* Add missing <optional> include

* Avoid print in get_hf_chat_template.py

* No designated initializers yet

* Try and work around msvc++ non-macro max resolution quirk

* Update test_chat_completion.py

* Wire LLM_KV_TOKENIZER_CHAT_TEMPLATE_N in llama_model_chat_template

* Refactor test-chat-template

* Test templates w/ minja

* Fix deprecation

* Add --jinja to llama-run

* Update common_chat_format_example to use minja template wrapper

* Test chat_template in e2e test

* Update utils.py

* Update test_chat_completion.py

* Update run.cpp

* Update arg.cpp

* Refactor common_chat_* functions to accept minja template + use_jinja option

* Attempt to fix linkage of LLAMA_CHATML_TEMPLATE

* Revert LLAMA_CHATML_TEMPLATE refactor

* Normalize newlines in test-chat-templates for windows tests

* Forward decl minja::chat_template to avoid eager json dep

* Flush stdout in chat template before potential crash

* Fix copy elision warning

* Rm unused optional include

* Add missing optional include to server.cpp

* Disable jinja test that has a cryptic windows failure

* minja: fix vigogne (https://github.com/google/minja/pull/22)

* Apply suggestions from code review

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Finish suggested renamings

* Move chat_templates inside server_context + remove mutex

* Update --chat-template-file w/ recent change to --chat-template

* Refactor chat template validation

* Guard against missing eos/bos tokens (null token otherwise throws in llama_vocab::impl::token_get_attr)

* Warn against missing eos / bos tokens when jinja template references them

* rename: common_chat_template[s]

* reinstate assert on chat_templates.template_default

* Update minja to b8437df626

* Update minja to https://github.com/google/minja/pull/25

* Update minja from https://github.com/google/minja/pull/27

* rm unused optional header

---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-01-21 13:18:51 +00:00

207 lines
6.9 KiB
C++

#include "llama.h"
#include <cstdio>
#include <cstring>
#include <iostream>
#include <string>
#include <vector>
static void print_usage(int, char ** argv) {
printf("\nexample usage:\n");
printf("\n %s -m model.gguf [-c context_size] [-ngl n_gpu_layers]\n", argv[0]);
printf("\n");
}
int main(int argc, char ** argv) {
std::string model_path;
int ngl = 99;
int n_ctx = 2048;
// parse command line arguments
for (int i = 1; i < argc; i++) {
try {
if (strcmp(argv[i], "-m") == 0) {
if (i + 1 < argc) {
model_path = argv[++i];
} else {
print_usage(argc, argv);
return 1;
}
} else if (strcmp(argv[i], "-c") == 0) {
if (i + 1 < argc) {
n_ctx = std::stoi(argv[++i]);
} else {
print_usage(argc, argv);
return 1;
}
} else if (strcmp(argv[i], "-ngl") == 0) {
if (i + 1 < argc) {
ngl = std::stoi(argv[++i]);
} else {
print_usage(argc, argv);
return 1;
}
} else {
print_usage(argc, argv);
return 1;
}
} catch (std::exception & e) {
fprintf(stderr, "error: %s\n", e.what());
print_usage(argc, argv);
return 1;
}
}
if (model_path.empty()) {
print_usage(argc, argv);
return 1;
}
// only print errors
llama_log_set([](enum ggml_log_level level, const char * text, void * /* user_data */) {
if (level >= GGML_LOG_LEVEL_ERROR) {
fprintf(stderr, "%s", text);
}
}, nullptr);
// load dynamic backends
ggml_backend_load_all();
// initialize the model
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = ngl;
llama_model * model = llama_model_load_from_file(model_path.c_str(), model_params);
if (!model) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
const llama_vocab * vocab = llama_model_get_vocab(model);
// initialize the context
llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = n_ctx;
ctx_params.n_batch = n_ctx;
llama_context * ctx = llama_init_from_model(model, ctx_params);
if (!ctx) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
// initialize the sampler
llama_sampler * smpl = llama_sampler_chain_init(llama_sampler_chain_default_params());
llama_sampler_chain_add(smpl, llama_sampler_init_min_p(0.05f, 1));
llama_sampler_chain_add(smpl, llama_sampler_init_temp(0.8f));
llama_sampler_chain_add(smpl, llama_sampler_init_dist(LLAMA_DEFAULT_SEED));
// helper function to evaluate a prompt and generate a response
auto generate = [&](const std::string & prompt) {
std::string response;
const bool is_first = llama_get_kv_cache_used_cells(ctx) == 0;
// tokenize the prompt
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
std::vector<llama_token> prompt_tokens(n_prompt_tokens);
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), is_first, true) < 0) {
GGML_ABORT("failed to tokenize the prompt\n");
}
// prepare a batch for the prompt
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
llama_token new_token_id;
while (true) {
// check if we have enough space in the context to evaluate this batch
int n_ctx = llama_n_ctx(ctx);
int n_ctx_used = llama_get_kv_cache_used_cells(ctx);
if (n_ctx_used + batch.n_tokens > n_ctx) {
printf("\033[0m\n");
fprintf(stderr, "context size exceeded\n");
exit(0);
}
if (llama_decode(ctx, batch)) {
GGML_ABORT("failed to decode\n");
}
// sample the next token
new_token_id = llama_sampler_sample(smpl, ctx, -1);
// is it an end of generation?
if (llama_vocab_is_eog(vocab, new_token_id)) {
break;
}
// convert the token to a string, print it and add it to the response
char buf[256];
int n = llama_token_to_piece(vocab, new_token_id, buf, sizeof(buf), 0, true);
if (n < 0) {
GGML_ABORT("failed to convert token to piece\n");
}
std::string piece(buf, n);
printf("%s", piece.c_str());
fflush(stdout);
response += piece;
// prepare the next batch with the sampled token
batch = llama_batch_get_one(&new_token_id, 1);
}
return response;
};
std::vector<llama_chat_message> messages;
std::vector<char> formatted(llama_n_ctx(ctx));
int prev_len = 0;
while (true) {
// get user input
printf("\033[32m> \033[0m");
std::string user;
std::getline(std::cin, user);
if (user.empty()) {
break;
}
const char * tmpl = llama_model_chat_template(model, /* name */ nullptr);
// add the user input to the message list and format it
messages.push_back({"user", strdup(user.c_str())});
int new_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), true, formatted.data(), formatted.size());
if (new_len > (int)formatted.size()) {
formatted.resize(new_len);
new_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), true, formatted.data(), formatted.size());
}
if (new_len < 0) {
fprintf(stderr, "failed to apply the chat template\n");
return 1;
}
// remove previous messages to obtain the prompt to generate the response
std::string prompt(formatted.begin() + prev_len, formatted.begin() + new_len);
// generate a response
printf("\033[33m");
std::string response = generate(prompt);
printf("\n\033[0m");
// add the response to the messages
messages.push_back({"assistant", strdup(response.c_str())});
prev_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), false, nullptr, 0);
if (prev_len < 0) {
fprintf(stderr, "failed to apply the chat template\n");
return 1;
}
}
// free resources
for (auto & msg : messages) {
free(const_cast<char *>(msg.content));
}
llama_sampler_free(smpl);
llama_free(ctx);
llama_model_free(model);
return 0;
}