mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-10-31 23:28:51 +01:00
9e359a4f47
* server: #5655 - continue to update other slots on embedding concurrent request. * server: tests: add multi users embeddings as fixed * server: tests: adding OAI compatible embedding concurrent endpoint * server: tests: adding OAI compatible embedding with multiple inputs
124 lines
3.0 KiB
Gherkin
124 lines
3.0 KiB
Gherkin
@llama.cpp
|
|
Feature: Parallel
|
|
|
|
Background: Server startup
|
|
Given a server listening on localhost:8080
|
|
And a model file stories260K.gguf
|
|
And a model alias tinyllama-2
|
|
And 42 as server seed
|
|
And 64 KV cache size
|
|
And 2 slots
|
|
And embeddings extraction
|
|
And continuous batching
|
|
Then the server is starting
|
|
Then the server is healthy
|
|
|
|
Scenario Outline: Multi users completion
|
|
Given a prompt:
|
|
"""
|
|
Write a very long story about AI.
|
|
"""
|
|
And a prompt:
|
|
"""
|
|
Write another very long music lyrics.
|
|
"""
|
|
And <n_predict> max tokens to predict
|
|
Given concurrent completion requests
|
|
Then the server is busy
|
|
Then the server is idle
|
|
And all slots are idle
|
|
Then all prompts are predicted with <n_predict> tokens
|
|
Examples:
|
|
| n_predict |
|
|
| 128 |
|
|
|
|
Scenario Outline: Multi users OAI completions compatibility
|
|
Given a system prompt You are a writer.
|
|
And a model tinyllama-2
|
|
Given a prompt:
|
|
"""
|
|
Write a very long book.
|
|
"""
|
|
And a prompt:
|
|
"""
|
|
Write another a poem.
|
|
"""
|
|
And <n_predict> max tokens to predict
|
|
And streaming is <streaming>
|
|
Given concurrent OAI completions requests
|
|
Then the server is busy
|
|
Then the server is idle
|
|
Then all prompts are predicted with <n_predict> tokens
|
|
Examples:
|
|
| streaming | n_predict |
|
|
| disabled | 128 |
|
|
| enabled | 64 |
|
|
|
|
Scenario: Multi users with total number of tokens to predict exceeds the KV Cache size #3969
|
|
Given a prompt:
|
|
"""
|
|
Write a very long story about AI.
|
|
"""
|
|
And a prompt:
|
|
"""
|
|
Write another very long music lyrics.
|
|
"""
|
|
And a prompt:
|
|
"""
|
|
Write a very long poem.
|
|
"""
|
|
And a prompt:
|
|
"""
|
|
Write a very long joke.
|
|
"""
|
|
And 128 max tokens to predict
|
|
Given concurrent completion requests
|
|
Then the server is busy
|
|
Then the server is idle
|
|
Then all prompts are predicted
|
|
|
|
Scenario: Multi users embeddings
|
|
Given a prompt:
|
|
"""
|
|
Write a very long story about AI.
|
|
"""
|
|
And a prompt:
|
|
"""
|
|
Write another very long music lyrics.
|
|
"""
|
|
And a prompt:
|
|
"""
|
|
Write a very long poem.
|
|
"""
|
|
And a prompt:
|
|
"""
|
|
Write a very long joke.
|
|
"""
|
|
Given concurrent embedding requests
|
|
Then the server is busy
|
|
Then the server is idle
|
|
Then all embeddings are generated
|
|
|
|
Scenario: Multi users OAI compatibility embeddings
|
|
Given a prompt:
|
|
"""
|
|
In which country Paris is located ?
|
|
"""
|
|
And a prompt:
|
|
"""
|
|
Is Madrid the capital of Spain ?
|
|
"""
|
|
And a prompt:
|
|
"""
|
|
What is the biggest US city ?
|
|
"""
|
|
And a prompt:
|
|
"""
|
|
What is the capital of Bulgaria ?
|
|
"""
|
|
And a model tinyllama-2
|
|
Given concurrent OAI embedding requests
|
|
Then the server is busy
|
|
Then the server is idle
|
|
Then all embeddings are generated
|