mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-06 02:48:57 +01:00
308 lines
11 KiB
Python
308 lines
11 KiB
Python
"""TODOs
|
|
1. Implement writers for known architectures, LLaMA in particular.
|
|
2. Add docstrings from the format specs.
|
|
3. After development is done, Convert it to a proper pip-installable Python package, and possibly move it to its own repo under ggml-org.
|
|
"""
|
|
|
|
import struct
|
|
import constants
|
|
from enum import IntEnum
|
|
from typing import Any, IO, List
|
|
|
|
import numpy as np
|
|
|
|
|
|
class GGMLQuantizationType(IntEnum):
|
|
F32 = 0
|
|
F16 = 1
|
|
Q4_0 = 2
|
|
Q4_1 = 3
|
|
# Q4_2 = 4 # support has been removed
|
|
# Q4_3 = 5 # support has been removed
|
|
Q5_0 = 6
|
|
Q5_1 = 7
|
|
Q8_0 = 8
|
|
Q8_1 = 9
|
|
Q2_K = 10
|
|
Q3_K = 11
|
|
Q4_K = 12
|
|
Q5_K = 13
|
|
Q6_K = 14
|
|
Q8_K = 15
|
|
|
|
|
|
class GGUFValueType(IntEnum):
|
|
UINT8 = 0
|
|
INT8 = 1
|
|
UINT16 = 2
|
|
INT16 = 3
|
|
UINT32 = 4
|
|
INT32 = 5
|
|
FLOAT32 = 6
|
|
BOOL = 7
|
|
STRING = 8
|
|
ARRAY = 9
|
|
|
|
@staticmethod
|
|
def get_type(val):
|
|
if isinstance(val, str) or isinstance(val, bytes):
|
|
return GGUFValueType.STRING
|
|
elif isinstance(val, list):
|
|
return GGUFValueType.ARRAY
|
|
elif isinstance(val, float):
|
|
return GGUFValueType.FLOAT32
|
|
elif isinstance(val, bool):
|
|
return GGUFValueType.BOOL
|
|
else:
|
|
return GGUFValueType.INT32
|
|
|
|
|
|
class GGUFWriter:
|
|
def __init__(self, fout: IO):
|
|
self.fout = fout
|
|
self.offset_tensor = 0
|
|
|
|
def write_header(self, tensor_count: int, metadata_kv_count: int):
|
|
self.fout.write(struct.pack("<I", constants.GGUF_MAGIC))
|
|
self.fout.write(struct.pack("<I", constants.GGUF_VERSION))
|
|
self.fout.write(struct.pack("<I", tensor_count))
|
|
self.fout.write(struct.pack("<I", metadata_kv_count))
|
|
|
|
@classmethod
|
|
def open(cls, path: str) -> "GGUFWriter":
|
|
f = open(path, "wb")
|
|
return cls(f)
|
|
|
|
def write_key(self, key: str):
|
|
self.write_val(key, GGUFValueType.STRING, write_vtype=False)
|
|
|
|
def write_uint8(self, key: str, val: int):
|
|
self.write_key(key)
|
|
self.write_val(val, GGUFValueType.UINT8)
|
|
|
|
def write_int8(self, key: str, val: int):
|
|
self.write_key(key)
|
|
self.write_val(val, GGUFValueType.INT8)
|
|
|
|
def write_uint16(self, key: str, val: int):
|
|
self.write_key(key)
|
|
self.write_val(val, GGUFValueType.UINT16)
|
|
|
|
def write_int16(self, key: str, val: int):
|
|
self.write_key(key)
|
|
self.write_val(val, GGUFValueType.INT16)
|
|
|
|
def write_uint32(self, key: str, val: int):
|
|
self.write_key(key)
|
|
self.write_val(val, GGUFValueType.UINT32)
|
|
|
|
def write_int32(self, key: str, val: int):
|
|
self.write_key(key)
|
|
self.write_val(val, GGUFValueType.INT32)
|
|
|
|
def write_float32(self, key: str, val: float):
|
|
self.write_key(key)
|
|
self.write_val(val, GGUFValueType.FLOAT32)
|
|
|
|
def write_bool(self, key: str, val: bool):
|
|
self.write_key(key)
|
|
self.write_val(val, GGUFValueType.BOOL)
|
|
|
|
def write_string(self, key: str, val: str):
|
|
self.write_key(key)
|
|
self.write_val(val, GGUFValueType.STRING)
|
|
|
|
def write_array(self, key: str, val: list):
|
|
if not isinstance(val, list):
|
|
raise ValueError("Value must be a list for array type")
|
|
|
|
self.write_key(key)
|
|
self.write_val(val, GGUFValueType.ARRAY)
|
|
|
|
def write_val(self: str, val: Any, vtype: GGUFValueType = None, write_vtype: bool = True):
|
|
if vtype is None:
|
|
vtype = GGUFValueType.get_type(val)
|
|
|
|
if write_vtype:
|
|
self.fout.write(struct.pack("<I", vtype))
|
|
|
|
if vtype == GGUFValueType.UINT8:
|
|
self.fout.write(struct.pack("<B", val))
|
|
elif vtype == GGUFValueType.INT8:
|
|
self.fout.write(struct.pack("<b", val))
|
|
elif vtype == GGUFValueType.UINT16:
|
|
self.fout.write(struct.pack("<H", val))
|
|
elif vtype == GGUFValueType.INT16:
|
|
self.fout.write(struct.pack("<h", val))
|
|
elif vtype == GGUFValueType.UINT32:
|
|
self.fout.write(struct.pack("<I", val))
|
|
elif vtype == GGUFValueType.INT32:
|
|
self.fout.write(struct.pack("<i", val))
|
|
elif vtype == GGUFValueType.FLOAT32:
|
|
self.fout.write(struct.pack("<f", val))
|
|
elif vtype == GGUFValueType.BOOL:
|
|
self.fout.write(struct.pack("?", val))
|
|
elif vtype == GGUFValueType.STRING:
|
|
encoded_val = val.encode("utf8") if isinstance(val, str) else val
|
|
self.fout.write(struct.pack("<I", len(encoded_val)))
|
|
self.fout.write(encoded_val)
|
|
elif vtype == GGUFValueType.ARRAY:
|
|
ltype = set([GGUFValueType.get_type(item) for item in val])
|
|
assert len(ltype) == 1, "All items in a GGUF array should be of the same type"
|
|
self.fout.write(struct.pack("<I", list(ltype)[0]))
|
|
self.fout.write(struct.pack("<I", len(val)))
|
|
for item in val:
|
|
self.write_val(item, write_vtype=False)
|
|
else:
|
|
raise ValueError("Invalid GGUF metadata value type")
|
|
|
|
@staticmethod
|
|
def ggml_pad(x: int, n: int) -> int:
|
|
return ((x + n - 1) // n) * n
|
|
|
|
def write_tensor_info(self, name: str, tensor: np.ndarray):
|
|
self.write_key(name)
|
|
n_dims = len(tensor.shape)
|
|
self.fout.write(struct.pack("<i", n_dims))
|
|
for i in range(n_dims):
|
|
self.fout.write(struct.pack("<i", tensor.shape[n_dims - 1 - i]))
|
|
|
|
assert tensor.dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
|
|
dtype = GGMLQuantizationType.F32 if tensor.dtype == np.float32 else GGMLQuantizationType.F16
|
|
self.fout.write(struct.pack("<i", dtype))
|
|
self.fout.write(struct.pack("<Q", self.offset_tensor))
|
|
self.offset_tensor += GGUFWriter.ggml_pad(tensor.nbytes, constants.GGUF_DEFAULT_ALIGNMENT)
|
|
|
|
self.flush()
|
|
|
|
def write_tensor(self, tensor: np.ndarray):
|
|
pad = GGUFWriter.ggml_pad(self.fout.tell(), constants.GGUF_DEFAULT_ALIGNMENT) - self.fout.tell()
|
|
if pad != 0:
|
|
self.fout.write(bytes([0] * pad))
|
|
|
|
tensor.tofile(self.fout)
|
|
pad = GGUFWriter.ggml_pad(tensor.nbytes, constants.GGUF_DEFAULT_ALIGNMENT) - tensor.nbytes
|
|
if pad != 0:
|
|
self.fout.write(bytes([0] * pad))
|
|
|
|
def flush(self):
|
|
self.fout.flush()
|
|
|
|
def close(self):
|
|
self.fout.close()
|
|
|
|
def write_architecture(self, architecture: str):
|
|
self.write_string(constants.KEY_GENERAL_ARCHITECTURE,
|
|
architecture)
|
|
|
|
def write_author(self, author: str):
|
|
self.write_string(constants.KEY_GENERAL_AUTHOR, author)
|
|
|
|
def write_url(self, url: str):
|
|
self.write_string(constants.KEY_GENERAL_URL, url)
|
|
|
|
def write_description(self, description: str):
|
|
self.write_string(constants.KEY_GENERAL_DESCRIPTION, description)
|
|
|
|
def write_file_type(self, file_type: str):
|
|
self.write_string(constants.KEY_GENERAL_FILE_TYPE, file_type)
|
|
|
|
def write_source_url(self, url: str):
|
|
self.write_string(constants.KEY_GENERAL_SOURCE_URL, url)
|
|
|
|
def write_source_hf_repo(self, repo: str):
|
|
self.write_string(constants.KEY_GENERAL_SOURCE_HF_REPO, repo)
|
|
|
|
def write_name(self, name: str):
|
|
self.write_string(constants.KEY_GENERAL_NAME, name)
|
|
|
|
def write_quantization_version(self, quantization_version: GGMLQuantizationType):
|
|
self.write_uint32(
|
|
constants.KEY_GENERAL_QUANTIZATION_VERSION, quantization_version)
|
|
|
|
def write_context_length(self, llm: str, length: int):
|
|
self.write_uint32(
|
|
constants.KEY_LLM_CONTEXT_LENGTH.format(llm=llm), length)
|
|
|
|
def write_embedding_length(self, llm: str, length: int):
|
|
self.write_uint32(
|
|
constants.KEY_LLM_EMBEDDING_LENGTH.format(llm=llm), length)
|
|
|
|
def write_layer_count(self, llm: str, length: int):
|
|
self.write_uint32(
|
|
constants.KEY_LLM_LAYER_COUNT.format(llm=llm), length)
|
|
|
|
def write_feed_forward_length(self, llm: str, length: int):
|
|
self.write_uint32(
|
|
constants.KEY_LLM_FEED_FORWARD_LENGTH.format(llm=llm), length)
|
|
|
|
def write_parallel_residual(self, llm: str, use: bool):
|
|
self.write_bool(
|
|
constants.KEY_LLM_USE_PARALLEL_RESIDUAL.format(llm=llm), use)
|
|
|
|
def write_tensor_data_layout(self, llm: str, layout: str):
|
|
self.write_string(
|
|
constants.KEY_LLM_TENSOR_DATA_LAYOUT.format(llm=llm), layout)
|
|
|
|
def write_head_count(self, llm: str, count: int):
|
|
self.write_uint32(
|
|
constants.KEY_ATTENTION_HEAD_COUNT.format(llm=llm), count)
|
|
|
|
def write_head_count_kv(self, llm: str, count: int):
|
|
self.write_uint32(
|
|
constants.KEY_ATTENTION_HEAD_COUNT_KV.format(llm=llm), count)
|
|
|
|
def write_max_alibi_bias(self, llm: str, bias: float):
|
|
self.write_float32(
|
|
constants.KEY_ATTENTION_MAX_ALIBI_BIAS.format(llm=llm), bias)
|
|
|
|
def write_clamp_kqv(self, llm: str, value: float):
|
|
self.write_float32(
|
|
constants.KEY_ATTENTION_CLAMP_KQV.format(llm=llm), value)
|
|
|
|
def write_layer_norm_eps(self, llm: str, value: float):
|
|
self.write_float32(
|
|
constants.KEY_ATTENTION_LAYERNORM_EPS.format(llm=llm), value)
|
|
|
|
def write_layer_norm_rms_eps(self, llm: str, value: float):
|
|
self.write_float32(
|
|
constants.KEY_ATTENTION_LAYERNORM_RMS_EPS.format(llm=llm), value)
|
|
|
|
def write_rope_dimension_count(self, llm: str, count: int):
|
|
self.write_uint32(
|
|
constants.KEY_ROPE_DIMENSION_COUNT.format(llm=llm), count)
|
|
|
|
def write_rope_scale(self, llm: str, value: float):
|
|
self.write_float32(constants.KEY_ROPE_SCALE.format(llm=llm), value)
|
|
|
|
def write_tokenizer_model(self, model: str):
|
|
self.write_string(constants.KEY_TOKENIZER_MODEL, model)
|
|
|
|
def write_token_list(self, tokens: List):
|
|
self.write_array(constants.KEY_TOKENIZER_LIST, tokens)
|
|
|
|
def write_token_merges(self, merges: List):
|
|
self.write_array(constants.KEY_TOKENIZER_MERGES, merges)
|
|
|
|
def write_token_scores(self, scores: List[float]):
|
|
self.write_array(constants.KEY_TOKENIZER_SCORES, scores)
|
|
|
|
|
|
# Example usage:
|
|
if __name__ == "__main__":
|
|
# Example usage with a file
|
|
gguf_writer = GGUFWriter.open("example.gguf")
|
|
gguf_writer.write_header(2, 3)
|
|
|
|
gguf_writer.write_architecture("llama")
|
|
gguf_writer.write_uint32("answer", 42) # Write a 32-bit integer
|
|
gguf_writer.write_float32("answer_in_float", 42.0) # Write a 32-bit float
|
|
tensor1 = np.ones((32,), dtype=np.float32) * 100.0
|
|
tensor2 = np.ones((32,), dtype=np.float32) * 101.0
|
|
gguf_writer.write_tensor_info("tensor0", tensor1)
|
|
gguf_writer.write_tensor_info("tensor1", tensor2)
|
|
gguf_writer.write_tensor(tensor1)
|
|
gguf_writer.write_tensor(tensor2)
|
|
|
|
gguf_writer.close()
|