mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-23 18:09:18 +01:00
db49ff8ed7
The server currently schedules tasks using a sleep(5ms) busy loop. This adds unnecessary latency since most sleep implementations do a round up to the system scheduling quantum (usually 10ms). Other libc sleep impls spin for smaller time intervals which results in the server's busy loop consuming all available cpu. Having the explicit notify() / wait() code also helps aid in the readability of the server code. See mozilla-Ocho/llamafile@711344b
3198 lines
115 KiB
C++
3198 lines
115 KiB
C++
#include "common.h"
|
|
#include "llama.h"
|
|
#include "grammar-parser.h"
|
|
|
|
#include "../llava/clip.h"
|
|
|
|
#include "stb_image.h"
|
|
|
|
#ifndef NDEBUG
|
|
// crash the server in debug mode, otherwise send an http 500 error
|
|
#define CPPHTTPLIB_NO_EXCEPTIONS 1
|
|
#endif
|
|
// increase max payload length to allow use of larger context size
|
|
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
|
|
#include "httplib.h"
|
|
#include "json.hpp"
|
|
|
|
// auto generated files (update with ./deps.sh)
|
|
#include "index.html.hpp"
|
|
#include "index.js.hpp"
|
|
#include "completion.js.hpp"
|
|
#include "json-schema-to-grammar.mjs.hpp"
|
|
|
|
#include <cstddef>
|
|
#include <thread>
|
|
#include <mutex>
|
|
#include <chrono>
|
|
#include <condition_variable>
|
|
|
|
#ifndef SERVER_VERBOSE
|
|
#define SERVER_VERBOSE 1
|
|
#endif
|
|
|
|
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
|
|
|
|
using json = nlohmann::json;
|
|
|
|
struct server_params
|
|
{
|
|
std::string hostname = "127.0.0.1";
|
|
std::string api_key;
|
|
std::string public_path = "examples/server/public";
|
|
int32_t port = 8080;
|
|
int32_t read_timeout = 600;
|
|
int32_t write_timeout = 600;
|
|
};
|
|
|
|
static bool server_verbose = false;
|
|
|
|
#if SERVER_VERBOSE != 1
|
|
#define LOG_VERBOSE(MSG, ...)
|
|
#else
|
|
#define LOG_VERBOSE(MSG, ...) \
|
|
do \
|
|
{ \
|
|
if (server_verbose) \
|
|
{ \
|
|
server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
|
|
} \
|
|
} while (0)
|
|
#endif
|
|
|
|
#define LOG_ERROR( MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
|
|
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
|
|
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
|
|
|
|
json oaicompat_completion_params_parse(const json &body);
|
|
std::string format_chatml(std::vector<json> messages);
|
|
|
|
|
|
//
|
|
// base64 utils (TODO: move to common in the future)
|
|
//
|
|
|
|
static const std::string base64_chars =
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
"abcdefghijklmnopqrstuvwxyz"
|
|
"0123456789+/";
|
|
|
|
static inline bool is_base64(uint8_t c)
|
|
{
|
|
return (isalnum(c) || (c == '+') || (c == '/'));
|
|
}
|
|
|
|
static std::vector<uint8_t> base64_decode(std::string const &encoded_string)
|
|
{
|
|
int i = 0;
|
|
int j = 0;
|
|
int in_ = 0;
|
|
|
|
int in_len = encoded_string.size();
|
|
|
|
uint8_t char_array_4[4];
|
|
uint8_t char_array_3[3];
|
|
|
|
std::vector<uint8_t> ret;
|
|
|
|
while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_]))
|
|
{
|
|
char_array_4[i++] = encoded_string[in_]; in_++;
|
|
if (i == 4)
|
|
{
|
|
for (i = 0; i <4; i++)
|
|
{
|
|
char_array_4[i] = base64_chars.find(char_array_4[i]);
|
|
}
|
|
|
|
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
|
|
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
|
|
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
|
|
|
|
for (i = 0; (i < 3); i++)
|
|
{
|
|
ret.push_back(char_array_3[i]);
|
|
}
|
|
i = 0;
|
|
}
|
|
}
|
|
|
|
if (i)
|
|
{
|
|
for (j = i; j <4; j++)
|
|
{
|
|
char_array_4[j] = 0;
|
|
}
|
|
|
|
for (j = 0; j <4; j++)
|
|
{
|
|
char_array_4[j] = base64_chars.find(char_array_4[j]);
|
|
}
|
|
|
|
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
|
|
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
|
|
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
|
|
|
|
for (j = 0; (j < i - 1); j++)
|
|
{
|
|
ret.push_back(char_array_3[j]);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
//
|
|
// parallel
|
|
//
|
|
|
|
enum task_type {
|
|
COMPLETION_TASK,
|
|
CANCEL_TASK
|
|
};
|
|
|
|
struct task_server {
|
|
int id;
|
|
int target_id;
|
|
task_type type;
|
|
json data;
|
|
bool infill_mode = false;
|
|
bool embedding_mode = false;
|
|
int multitask_id = -1;
|
|
};
|
|
|
|
struct task_result {
|
|
int id;
|
|
int multitask_id = -1;
|
|
bool stop;
|
|
bool error;
|
|
json result_json;
|
|
};
|
|
|
|
struct task_multi {
|
|
int id;
|
|
std::set<int> subtasks_remaining{};
|
|
std::vector<task_result> results{};
|
|
};
|
|
|
|
// TODO: can become bool if we can't find use of more states
|
|
enum slot_state
|
|
{
|
|
IDLE,
|
|
PROCESSING,
|
|
};
|
|
|
|
enum slot_command
|
|
{
|
|
NONE,
|
|
LOAD_PROMPT,
|
|
RELEASE,
|
|
};
|
|
|
|
struct slot_params
|
|
{
|
|
bool stream = true;
|
|
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
|
|
|
|
uint32_t seed = -1; // RNG seed
|
|
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
|
int32_t n_predict = -1; // new tokens to predict
|
|
|
|
std::vector<std::string> antiprompt;
|
|
|
|
json input_prefix;
|
|
json input_suffix;
|
|
};
|
|
|
|
struct slot_image
|
|
{
|
|
int32_t id;
|
|
|
|
bool request_encode_image = false;
|
|
float* image_embedding = nullptr;
|
|
int32_t image_tokens = 0;
|
|
|
|
clip_image_u8 img_data;
|
|
|
|
std::string prefix_prompt; // before of this image
|
|
};
|
|
|
|
// completion token output with probabilities
|
|
struct completion_token_output
|
|
{
|
|
struct token_prob
|
|
{
|
|
llama_token tok;
|
|
float prob;
|
|
};
|
|
|
|
std::vector<token_prob> probs;
|
|
llama_token tok;
|
|
std::string text_to_send;
|
|
};
|
|
|
|
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
|
|
{
|
|
}
|
|
return i;
|
|
}
|
|
|
|
enum stop_type
|
|
{
|
|
STOP_FULL,
|
|
STOP_PARTIAL,
|
|
};
|
|
|
|
static bool ends_with(const std::string &str, const std::string &suffix)
|
|
{
|
|
return str.size() >= suffix.size() &&
|
|
0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
|
|
}
|
|
|
|
static size_t find_partial_stop_string(const std::string &stop,
|
|
const std::string &text)
|
|
{
|
|
if (!text.empty() && !stop.empty())
|
|
{
|
|
const char text_last_char = text.back();
|
|
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
|
|
{
|
|
if (stop[char_index] == text_last_char)
|
|
{
|
|
const std::string current_partial = stop.substr(0, char_index + 1);
|
|
if (ends_with(text, current_partial))
|
|
{
|
|
return text.size() - char_index - 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return std::string::npos;
|
|
}
|
|
|
|
// TODO: reuse llama_detokenize
|
|
template <class Iter>
|
|
static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
|
|
{
|
|
std::string ret;
|
|
for (; begin != end; ++begin)
|
|
{
|
|
ret += llama_token_to_piece(ctx, *begin);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void server_log(const char *level, const char *function, int line,
|
|
const char *message, const nlohmann::ordered_json &extra)
|
|
{
|
|
nlohmann::ordered_json log
|
|
{
|
|
{"timestamp", time(nullptr)},
|
|
{"level", level},
|
|
{"function", function},
|
|
{"line", line},
|
|
{"message", message},
|
|
};
|
|
|
|
if (!extra.empty())
|
|
{
|
|
log.merge_patch(extra);
|
|
}
|
|
|
|
const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
|
|
printf("%.*s\n", (int)str.size(), str.data());
|
|
fflush(stdout);
|
|
}
|
|
|
|
// format incomplete utf-8 multibyte character for output
|
|
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
|
|
{
|
|
std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
|
|
// if the size is 1 and first bit is 1, meaning it's a partial character
|
|
// (size > 1 meaning it's already a known token)
|
|
if (out.size() == 1 && (out[0] & 0x80) == 0x80)
|
|
{
|
|
std::stringstream ss;
|
|
ss << std::hex << (out[0] & 0xff);
|
|
std::string res(ss.str());
|
|
out = "byte: \\x" + res;
|
|
}
|
|
return out;
|
|
}
|
|
|
|
// convert a vector of completion_token_output to json
|
|
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs)
|
|
{
|
|
json out = json::array();
|
|
for (const auto &prob : probs)
|
|
{
|
|
json probs_for_token = json::array();
|
|
for (const auto &p : prob.probs)
|
|
{
|
|
std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
|
|
probs_for_token.push_back(json
|
|
{
|
|
{"tok_str", tok_str},
|
|
{"prob", p.prob},
|
|
});
|
|
}
|
|
std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
|
|
out.push_back(json{
|
|
{"content", tok_str},
|
|
{"probs", probs_for_token},
|
|
});
|
|
}
|
|
return out;
|
|
}
|
|
|
|
template <typename T>
|
|
static T json_value(const json &body, const std::string &key, const T &default_value)
|
|
{
|
|
// Fallback null to default value
|
|
return body.contains(key) && !body.at(key).is_null()
|
|
? body.value(key, default_value)
|
|
: default_value;
|
|
}
|
|
|
|
struct llama_client_slot
|
|
{
|
|
int id;
|
|
int task_id = -1;
|
|
|
|
struct slot_params params;
|
|
|
|
slot_state state = IDLE;
|
|
slot_command command = NONE;
|
|
|
|
// used to determine the slot that has been used the longest
|
|
int64_t t_last_used = -1;
|
|
|
|
// generation props
|
|
int32_t n_ctx = 0; // context size per slot
|
|
int32_t n_past = 0;
|
|
int32_t n_decoded = 0;
|
|
int32_t n_remaining = -1;
|
|
int32_t i_batch = -1;
|
|
|
|
int32_t num_prompt_tokens = 0;
|
|
int32_t num_prompt_tokens_processed = 0;
|
|
|
|
json prompt;
|
|
std::string generated_text;
|
|
llama_token sampled;
|
|
std::vector<llama_token> cache_tokens;
|
|
std::vector<completion_token_output> generated_token_probs;
|
|
|
|
bool infill = false;
|
|
bool embedding = false;
|
|
bool has_next_token = true;
|
|
bool truncated = false;
|
|
bool stopped_eos = false;
|
|
bool stopped_word = false;
|
|
bool stopped_limit = false;
|
|
|
|
bool oaicompat = false;
|
|
std::string oaicompat_model;
|
|
|
|
std::string stopping_word;
|
|
|
|
// sampling
|
|
struct llama_sampling_params sparams;
|
|
llama_sampling_context *ctx_sampling = nullptr;
|
|
|
|
// multimodal
|
|
std::vector<slot_image> images;
|
|
|
|
// stats
|
|
size_t sent_count = 0;
|
|
size_t sent_token_probs_index = 0;
|
|
|
|
int64_t t_start_process_prompt;
|
|
int64_t t_start_genereration;
|
|
|
|
double t_prompt_processing; // ms
|
|
double t_token_generation; // ms
|
|
|
|
// multitasks
|
|
int multitask_id = -1;
|
|
|
|
void reset() {
|
|
num_prompt_tokens = 0;
|
|
generated_text = "";
|
|
truncated = false;
|
|
stopped_eos = false;
|
|
stopped_word = false;
|
|
stopped_limit = false;
|
|
stopping_word = "";
|
|
n_past = 0;
|
|
sent_count = 0;
|
|
sent_token_probs_index = 0;
|
|
infill = false;
|
|
|
|
generated_token_probs.clear();
|
|
|
|
for (slot_image &img : images)
|
|
{
|
|
free(img.image_embedding);
|
|
delete[] img.img_data.data;
|
|
img.prefix_prompt = "";
|
|
}
|
|
|
|
images.clear();
|
|
}
|
|
|
|
bool has_budget(gpt_params &global_params) {
|
|
n_remaining = -1;
|
|
if(params.n_predict != -1)
|
|
{
|
|
n_remaining = params.n_predict - n_decoded;
|
|
}
|
|
else if (global_params.n_predict != -1)
|
|
{
|
|
n_remaining = global_params.n_predict - n_decoded;
|
|
}
|
|
return n_remaining > 0 || n_remaining == -1; // no budget || limitless
|
|
}
|
|
|
|
bool available() const {
|
|
return state == IDLE && command == NONE;
|
|
}
|
|
|
|
bool is_processing() const {
|
|
return (state == IDLE && command == LOAD_PROMPT) || state == PROCESSING;
|
|
}
|
|
|
|
void add_token_string(const completion_token_output &token) {
|
|
if (command == RELEASE)
|
|
{
|
|
return;
|
|
}
|
|
cache_tokens.push_back(token.tok);
|
|
generated_token_probs.push_back(token);
|
|
}
|
|
|
|
void release() {
|
|
if (state == IDLE || state == PROCESSING)
|
|
{
|
|
t_token_generation = (ggml_time_us() - t_start_genereration) / 1e3;
|
|
command = RELEASE;
|
|
}
|
|
}
|
|
|
|
json get_formated_timings() {
|
|
return json
|
|
{
|
|
{"prompt_n", num_prompt_tokens_processed},
|
|
{"prompt_ms", t_prompt_processing},
|
|
{"prompt_per_token_ms", t_prompt_processing / num_prompt_tokens_processed},
|
|
{"prompt_per_second", 1e3 / t_prompt_processing * num_prompt_tokens_processed},
|
|
|
|
{"predicted_n", n_decoded},
|
|
{"predicted_ms", t_token_generation},
|
|
{"predicted_per_token_ms", t_token_generation / n_decoded},
|
|
{"predicted_per_second", 1e3 / t_token_generation * n_decoded},
|
|
};
|
|
}
|
|
|
|
void print_timings() const {
|
|
LOG_TEE("\n");
|
|
LOG_TEE("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
|
|
__func__, t_prompt_processing, num_prompt_tokens_processed, t_prompt_processing / num_prompt_tokens_processed, 1e3 / t_prompt_processing * num_prompt_tokens_processed);
|
|
LOG_TEE("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
|
|
__func__, t_token_generation, n_decoded,t_token_generation / n_decoded, 1e3 / t_token_generation * n_decoded);
|
|
LOG_TEE("%s: total time = %10.2f ms\n", __func__, t_prompt_processing + t_token_generation);
|
|
}
|
|
};
|
|
|
|
struct llama_server_context
|
|
{
|
|
llama_model *model = nullptr;
|
|
llama_context *ctx = nullptr;
|
|
|
|
clip_ctx *clp_ctx = nullptr;
|
|
|
|
gpt_params params;
|
|
|
|
llama_batch batch;
|
|
|
|
bool multimodal = false;
|
|
bool clean_kv_cache = true;
|
|
bool all_slots_are_idle = false;
|
|
bool add_bos_token = true;
|
|
|
|
int32_t id_gen;
|
|
int32_t n_ctx; // total context for all clients / slots
|
|
|
|
// system prompt
|
|
bool system_need_update = false;
|
|
|
|
std::string system_prompt;
|
|
std::vector<llama_token> system_tokens;
|
|
|
|
std::string name_user; // this should be the antiprompt
|
|
std::string name_assistant;
|
|
|
|
// slots / clients
|
|
std::vector<llama_client_slot> slots;
|
|
|
|
std::vector<task_server> queue_tasks;
|
|
std::vector<task_result> queue_results;
|
|
std::vector<task_multi> queue_multitasks;
|
|
std::mutex mutex_tasks; // also guards id_gen, and queue_multitasks
|
|
std::condition_variable condition_tasks;
|
|
std::mutex mutex_results;
|
|
std::condition_variable condition_results;
|
|
|
|
~llama_server_context()
|
|
{
|
|
if (ctx)
|
|
{
|
|
llama_free(ctx);
|
|
ctx = nullptr;
|
|
}
|
|
if (model)
|
|
{
|
|
llama_free_model(model);
|
|
model = nullptr;
|
|
}
|
|
}
|
|
|
|
bool load_model(const gpt_params ¶ms_)
|
|
{
|
|
params = params_;
|
|
if (!params.mmproj.empty()) {
|
|
multimodal = true;
|
|
LOG_TEE("Multi Modal Mode Enabled");
|
|
clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
|
|
if(clp_ctx == nullptr) {
|
|
LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
|
|
return false;
|
|
}
|
|
|
|
if (params.n_ctx < 2048) { // request larger context for the image embedding
|
|
params.n_ctx = 2048;
|
|
}
|
|
}
|
|
|
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
|
if (model == nullptr)
|
|
{
|
|
LOG_ERROR("unable to load model", {{"model", params.model}});
|
|
return false;
|
|
}
|
|
|
|
if (multimodal) {
|
|
const int n_embd_clip = clip_n_mmproj_embd(clp_ctx);
|
|
const int n_embd_llm = llama_n_embd(model);
|
|
if (n_embd_clip != n_embd_llm) {
|
|
LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
n_ctx = llama_n_ctx(ctx);
|
|
|
|
add_bos_token = llama_should_add_bos_token(model);
|
|
|
|
return true;
|
|
}
|
|
|
|
void initialize() {
|
|
id_gen = 0;
|
|
|
|
// create slots
|
|
all_slots_are_idle = true;
|
|
|
|
const int32_t n_ctx_slot = n_ctx / params.n_parallel;
|
|
|
|
LOG_TEE("Available slots:\n");
|
|
for (int i = 0; i < params.n_parallel; i++)
|
|
{
|
|
llama_client_slot slot;
|
|
|
|
slot.id = i;
|
|
slot.n_ctx = n_ctx_slot;
|
|
slot.reset();
|
|
|
|
LOG_TEE(" -> Slot %i - max context: %i\n", slot.id, n_ctx_slot);
|
|
slots.push_back(slot);
|
|
}
|
|
|
|
batch = llama_batch_init(n_ctx, 0, params.n_parallel);
|
|
|
|
// empty system prompt
|
|
system_prompt = "";
|
|
system_tokens.clear();
|
|
}
|
|
|
|
std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
|
|
{
|
|
// TODO: currently, we tokenize using special tokens by default
|
|
// this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
|
|
// but it's better compared to completely ignoring ChatML and other chat templates
|
|
const bool TMP_FORCE_SPECIAL = true;
|
|
|
|
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
|
|
// or the first element of the json_prompt array is a string.
|
|
std::vector<llama_token> prompt_tokens;
|
|
|
|
if (json_prompt.is_array())
|
|
{
|
|
bool first = true;
|
|
for (const auto& p : json_prompt)
|
|
{
|
|
if (p.is_string())
|
|
{
|
|
auto s = p.template get<std::string>();
|
|
std::vector<llama_token> p;
|
|
if (first)
|
|
{
|
|
p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
|
|
first = false;
|
|
}
|
|
else
|
|
{
|
|
p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
|
|
}
|
|
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
|
|
}
|
|
else
|
|
{
|
|
if (first)
|
|
{
|
|
first = false;
|
|
}
|
|
prompt_tokens.push_back(p.template get<llama_token>());
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
auto s = json_prompt.template get<std::string>();
|
|
prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
|
|
}
|
|
|
|
return prompt_tokens;
|
|
}
|
|
|
|
llama_client_slot* get_slot(int id) {
|
|
int64_t t_last = ggml_time_us();
|
|
llama_client_slot *last_used = nullptr;
|
|
|
|
for (llama_client_slot & slot : slots)
|
|
{
|
|
if (slot.id == id && slot.available())
|
|
{
|
|
return &slot;
|
|
}
|
|
|
|
if (slot.available() && slot.t_last_used < t_last)
|
|
{
|
|
last_used = &slot;
|
|
t_last = slot.t_last_used;
|
|
}
|
|
}
|
|
|
|
return last_used;
|
|
}
|
|
|
|
bool launch_slot_with_data(llama_client_slot* &slot, json data) {
|
|
slot_params default_params;
|
|
llama_sampling_params default_sparams;
|
|
|
|
if (data.count("__oaicompat") != 0) {
|
|
slot->oaicompat = true;
|
|
slot->oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
|
|
} else {
|
|
slot->oaicompat = false;
|
|
slot->oaicompat_model = "";
|
|
}
|
|
|
|
slot->params.stream = json_value(data, "stream", false);
|
|
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
|
|
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
|
|
slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
|
|
slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
|
|
slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
|
|
slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
|
|
slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
|
|
slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
|
|
slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
|
|
slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
|
|
slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
|
|
slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
|
|
slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
|
|
slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
|
|
slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
|
|
slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
|
|
slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
|
|
slot->params.seed = json_value(data, "seed", default_params.seed);
|
|
slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
|
|
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
|
|
|
|
// infill
|
|
if (data.count("input_prefix") != 0)
|
|
{
|
|
slot->params.input_prefix = data["input_prefix"];
|
|
}
|
|
else
|
|
{
|
|
slot->params.input_prefix = "";
|
|
}
|
|
|
|
if (data.count("input_suffix") != 0)
|
|
{
|
|
slot->params.input_suffix = data["input_suffix"];
|
|
}
|
|
else
|
|
{
|
|
slot->params.input_suffix = "";
|
|
}
|
|
|
|
if (data.count("prompt") != 0)
|
|
{
|
|
slot->prompt = data["prompt"];
|
|
}
|
|
else
|
|
{
|
|
slot->prompt = "";
|
|
}
|
|
|
|
slot->sparams.penalty_prompt_tokens.clear();
|
|
slot->sparams.use_penalty_prompt_tokens = false;
|
|
const auto &penalty_prompt = data.find("penalty_prompt");
|
|
if (penalty_prompt != data.end())
|
|
{
|
|
if (penalty_prompt->is_string())
|
|
{
|
|
const auto penalty_prompt_string = penalty_prompt->get<std::string>();
|
|
auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false);
|
|
slot->sparams.penalty_prompt_tokens.swap(penalty_tokens);
|
|
if (slot->params.n_predict > 0)
|
|
{
|
|
slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict);
|
|
}
|
|
slot->sparams.use_penalty_prompt_tokens = true;
|
|
}
|
|
else if (penalty_prompt->is_array())
|
|
{
|
|
const auto n_tokens = penalty_prompt->size();
|
|
slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict));
|
|
const int n_vocab = llama_n_vocab(model);
|
|
for (const auto &penalty_token : *penalty_prompt)
|
|
{
|
|
if (penalty_token.is_number_integer())
|
|
{
|
|
const auto tok = penalty_token.get<llama_token>();
|
|
if (tok >= 0 && tok < n_vocab)
|
|
{
|
|
slot->sparams.penalty_prompt_tokens.push_back(tok);
|
|
}
|
|
}
|
|
}
|
|
slot->sparams.use_penalty_prompt_tokens = true;
|
|
}
|
|
}
|
|
|
|
slot->sparams.logit_bias.clear();
|
|
|
|
if (json_value(data, "ignore_eos", false))
|
|
{
|
|
slot->sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
|
|
}
|
|
|
|
const auto &logit_bias = data.find("logit_bias");
|
|
if (logit_bias != data.end() && logit_bias->is_array())
|
|
{
|
|
const int n_vocab = llama_n_vocab(model);
|
|
for (const auto &el : *logit_bias)
|
|
{
|
|
if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
|
|
{
|
|
llama_token tok = el[0].get<llama_token>();
|
|
if (tok >= 0 && tok < n_vocab)
|
|
{
|
|
if (el[1].is_number())
|
|
{
|
|
slot->sparams.logit_bias[tok] = el[1].get<float>();
|
|
}
|
|
else if (el[1].is_boolean() && !el[1].get<bool>())
|
|
{
|
|
slot->sparams.logit_bias[tok] = -INFINITY;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
slot->params.antiprompt.clear();
|
|
|
|
const auto &stop = data.find("stop");
|
|
if (stop != data.end() && stop->is_array())
|
|
{
|
|
for (const auto &word : *stop)
|
|
{
|
|
if (!word.empty())
|
|
{
|
|
slot->params.antiprompt.push_back(word);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (multimodal)
|
|
{
|
|
const auto &images_data = data.find("image_data");
|
|
if (images_data != data.end() && images_data->is_array())
|
|
{
|
|
for (const auto &img : *images_data)
|
|
{
|
|
std::string data_b64 = img["data"].get<std::string>();
|
|
slot_image img_sl;
|
|
img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
|
|
int width, height, channels;
|
|
std::vector<uint8_t> image_buffer = base64_decode(data_b64);
|
|
data_b64.clear();
|
|
auto data = stbi_load_from_memory(image_buffer.data(), image_buffer.size(), &width, &height, &channels, 3);
|
|
if (!data) {
|
|
LOG_TEE("slot %i - failed to load image [id: %i]\n", slot->id, img_sl.id);
|
|
return false;
|
|
}
|
|
LOG_TEE("slot %i - image loaded [id: %i] resolution (%i x %i)\n", slot->id, img_sl.id, width, height);
|
|
img_sl.img_data.nx = width;
|
|
img_sl.img_data.ny = height;
|
|
img_sl.img_data.size = width * height * 3;
|
|
img_sl.img_data.data = new uint8_t[width * height * 3]();
|
|
memcpy(img_sl.img_data.data, data, width * height * 3);
|
|
stbi_image_free(data);
|
|
img_sl.request_encode_image = true;
|
|
slot->images.push_back(img_sl);
|
|
}
|
|
// process prompt
|
|
// example: system prompt [img-102] user [img-103] describe [img-134] -> [{id: 102, prefix: 'system prompt '}, {id: 103, prefix: ' user '}, {id: 134, prefix: ' describe '}]}
|
|
if (slot->images.size() > 0 && !slot->prompt.is_array())
|
|
{
|
|
std::string prompt = slot->prompt.get<std::string>();
|
|
size_t pos = 0, begin_prefix = 0;
|
|
std::string pattern = "[img-";
|
|
while ((pos = prompt.find(pattern, pos)) != std::string::npos) {
|
|
size_t end_prefix = pos;
|
|
pos += pattern.length();
|
|
size_t end_pos = prompt.find("]", pos);
|
|
if (end_pos != std::string::npos)
|
|
{
|
|
std::string image_id = prompt.substr(pos, end_pos - pos);
|
|
try
|
|
{
|
|
int img_id = std::stoi(image_id);
|
|
bool found = false;
|
|
for (slot_image &img : slot->images)
|
|
{
|
|
if (img.id == img_id) {
|
|
found = true;
|
|
img.prefix_prompt = prompt.substr(begin_prefix, end_prefix - begin_prefix);
|
|
begin_prefix = end_pos + 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
LOG_TEE("ERROR: Image with id: %i, not found.\n", img_id);
|
|
slot->images.clear();
|
|
return false;
|
|
}
|
|
} catch (const std::invalid_argument& e) {
|
|
LOG_TEE("Invalid image number id in prompt\n");
|
|
slot->images.clear();
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
slot->prompt = "";
|
|
slot->params.input_suffix = prompt.substr(begin_prefix);
|
|
slot->params.cache_prompt = false; // multimodal doesn't support cache prompt
|
|
}
|
|
}
|
|
}
|
|
|
|
if (slot->ctx_sampling != nullptr)
|
|
{
|
|
llama_sampling_free(slot->ctx_sampling);
|
|
}
|
|
slot->ctx_sampling = llama_sampling_init(slot->sparams);
|
|
llama_set_rng_seed(ctx, slot->params.seed);
|
|
slot->command = LOAD_PROMPT;
|
|
|
|
all_slots_are_idle = false;
|
|
|
|
LOG_TEE("slot %i is processing [task id: %i]\n", slot->id, slot->task_id);
|
|
|
|
return true;
|
|
}
|
|
|
|
void kv_cache_clear() {
|
|
// clear the entire KV cache
|
|
llama_kv_cache_clear(ctx);
|
|
clean_kv_cache = false;
|
|
}
|
|
|
|
void update_system_prompt() {
|
|
system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
|
|
|
|
llama_batch_clear(batch);
|
|
|
|
kv_cache_clear();
|
|
|
|
for (int i = 0; i < (int) system_tokens.size(); ++i)
|
|
{
|
|
llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
|
|
}
|
|
|
|
if (llama_decode(ctx, batch) != 0)
|
|
{
|
|
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
|
return;
|
|
}
|
|
|
|
// assign the system KV cache to all parallel sequences
|
|
for (int32_t i = 1; i < params.n_parallel; ++i)
|
|
{
|
|
llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size());
|
|
}
|
|
|
|
LOG_TEE("system prompt updated\n");
|
|
system_need_update = false;
|
|
}
|
|
|
|
void notify_system_prompt_changed() {
|
|
// release all slots
|
|
for (llama_client_slot &slot : slots)
|
|
{
|
|
slot.release();
|
|
}
|
|
|
|
system_need_update = true;
|
|
}
|
|
|
|
void process_system_prompt_data(const json &sys_props) {
|
|
system_prompt = sys_props.value("prompt", "");
|
|
name_user = sys_props.value("anti_prompt", "");
|
|
name_assistant = sys_props.value("assistant_name", "");
|
|
|
|
if (slots.size() > 0)
|
|
{
|
|
notify_system_prompt_changed();
|
|
}
|
|
}
|
|
|
|
static size_t find_stopping_strings(const std::string &text, const size_t last_token_size,
|
|
const stop_type type, llama_client_slot &slot)
|
|
{
|
|
size_t stop_pos = std::string::npos;
|
|
|
|
for (const std::string &word : slot.params.antiprompt)
|
|
{
|
|
size_t pos;
|
|
if (type == STOP_FULL)
|
|
{
|
|
const size_t tmp = word.size() + last_token_size;
|
|
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
|
|
pos = text.find(word, from_pos);
|
|
}
|
|
else
|
|
{
|
|
pos = find_partial_stop_string(word, text);
|
|
}
|
|
if (pos != std::string::npos &&
|
|
(stop_pos == std::string::npos || pos < stop_pos))
|
|
{
|
|
if (type == STOP_FULL)
|
|
{
|
|
slot.stopped_word = true;
|
|
slot.stopping_word = word;
|
|
slot.has_next_token = false;
|
|
}
|
|
stop_pos = pos;
|
|
}
|
|
}
|
|
|
|
return stop_pos;
|
|
}
|
|
|
|
bool process_token(completion_token_output &result, llama_client_slot &slot) {
|
|
// remember which tokens were sampled - used for repetition penalties during sampling
|
|
const std::string token_str = llama_token_to_piece(ctx, result.tok);
|
|
slot.sampled = result.tok;
|
|
|
|
// search stop word and delete it
|
|
slot.generated_text += token_str;
|
|
slot.has_next_token = true;
|
|
|
|
if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
|
|
{
|
|
// we can change penalty_prompt_tokens because it is always created from scratch each request
|
|
slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
|
|
}
|
|
|
|
// check if there is incomplete UTF-8 character at the end
|
|
bool incomplete = false;
|
|
for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
|
|
{
|
|
unsigned char c = slot.generated_text[slot.generated_text.size() - i];
|
|
if ((c & 0xC0) == 0x80)
|
|
{
|
|
// continuation byte: 10xxxxxx
|
|
continue;
|
|
}
|
|
if ((c & 0xE0) == 0xC0)
|
|
{
|
|
// 2-byte character: 110xxxxx ...
|
|
incomplete = i < 2;
|
|
}
|
|
else if ((c & 0xF0) == 0xE0)
|
|
{
|
|
// 3-byte character: 1110xxxx ...
|
|
incomplete = i < 3;
|
|
}
|
|
else if ((c & 0xF8) == 0xF0)
|
|
{
|
|
// 4-byte character: 11110xxx ...
|
|
incomplete = i < 4;
|
|
}
|
|
// else 1-byte character or invalid byte
|
|
break;
|
|
}
|
|
|
|
if (!incomplete)
|
|
{
|
|
size_t pos = std::min(slot.sent_count, slot.generated_text.size());
|
|
const std::string str_test = slot.generated_text.substr(pos);
|
|
bool is_stop_full = false;
|
|
size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot);
|
|
if (stop_pos != std::string::npos)
|
|
{
|
|
is_stop_full = true;
|
|
slot.generated_text.erase(
|
|
slot.generated_text.begin() + pos + stop_pos,
|
|
slot.generated_text.end());
|
|
pos = std::min(slot.sent_count, slot.generated_text.size());
|
|
}
|
|
else
|
|
{
|
|
is_stop_full = false;
|
|
stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_PARTIAL, slot);
|
|
}
|
|
|
|
// check if there is any token to predict
|
|
if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0))
|
|
{
|
|
// no send the stop word in the response
|
|
result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
|
|
slot.sent_count += result.text_to_send.size();
|
|
// add the token to slot queue and cache
|
|
}
|
|
slot.add_token_string(result);
|
|
if (slot.params.stream)
|
|
{
|
|
send_partial_response(slot, result);
|
|
}
|
|
}
|
|
|
|
if (incomplete)
|
|
{
|
|
slot.has_next_token = true;
|
|
}
|
|
|
|
// check the limits
|
|
if (slot.n_decoded > 2 && slot.has_next_token && !slot.has_budget(params))
|
|
{
|
|
slot.stopped_limit = true;
|
|
slot.has_next_token = false;
|
|
}
|
|
|
|
if (!slot.cache_tokens.empty() && result.tok == llama_token_eos(model))
|
|
{
|
|
slot.stopped_eos = true;
|
|
slot.has_next_token = false;
|
|
LOG_VERBOSE("eos token found", {});
|
|
}
|
|
|
|
LOG_VERBOSE("next token", {
|
|
{"token", result.tok},
|
|
{"token_text", tokens_to_output_formatted_string(ctx, result.tok)},
|
|
{"has_next_token", slot.has_next_token},
|
|
{"n_remain", slot.n_remaining},
|
|
{"num_tokens_predicted", slot.n_decoded},
|
|
{"stopped_eos", slot.stopped_eos},
|
|
{"stopped_word", slot.stopped_word},
|
|
{"stopped_limit", slot.stopped_limit},
|
|
{"stopping_word", slot.stopping_word},
|
|
});
|
|
|
|
return slot.has_next_token; // continue
|
|
}
|
|
|
|
bool process_images(llama_client_slot &slot) const
|
|
{
|
|
for (slot_image &img : slot.images)
|
|
{
|
|
if (!img.request_encode_image)
|
|
{
|
|
continue;
|
|
}
|
|
clip_image_f32 img_res;
|
|
if (!clip_image_preprocess(clp_ctx, &img.img_data, &img_res, /*pad2square =*/ true))
|
|
{
|
|
LOG_TEE("Error processing the given image");
|
|
clip_free(clp_ctx);
|
|
return false;
|
|
}
|
|
img.image_tokens = clip_n_patches(clp_ctx);
|
|
img.image_embedding = (float *)malloc(clip_embd_nbytes(clp_ctx));
|
|
if (!img.image_embedding)
|
|
{
|
|
LOG_TEE("Unable to allocate memory for image embeddings\n");
|
|
clip_free(clp_ctx);
|
|
return false;
|
|
}
|
|
LOG_TEE("slot %i - encoding image [id: %i]\n", slot.id, img.id);
|
|
if (!clip_image_encode(clp_ctx, params.n_threads, &img_res, img.image_embedding))
|
|
{
|
|
LOG_TEE("Unable to encode image\n");
|
|
return false;
|
|
}
|
|
img.request_encode_image = false;
|
|
}
|
|
|
|
return slot.images.size() > 0;
|
|
}
|
|
|
|
void send_error(task_server& task, std::string error)
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_results);
|
|
task_result res;
|
|
res.id = task.id;
|
|
res.multitask_id = task.multitask_id;
|
|
res.stop = false;
|
|
res.error = true;
|
|
res.result_json = { { "content", error } };
|
|
queue_results.push_back(res);
|
|
condition_results.notify_all();
|
|
}
|
|
|
|
void add_multi_task(int id, std::vector<int>& sub_ids)
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex_tasks);
|
|
task_multi multi;
|
|
multi.id = id;
|
|
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
|
|
queue_multitasks.push_back(multi);
|
|
condition_tasks.notify_one();
|
|
}
|
|
|
|
void update_multi_task(int multitask_id, int subtask_id, task_result& result)
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex_tasks);
|
|
for (auto& multitask : queue_multitasks)
|
|
{
|
|
if (multitask.id == multitask_id)
|
|
{
|
|
multitask.subtasks_remaining.erase(subtask_id);
|
|
multitask.results.push_back(result);
|
|
condition_tasks.notify_one();
|
|
}
|
|
}
|
|
}
|
|
|
|
json get_model_props()
|
|
{
|
|
return get_formated_generation(slots[0]);
|
|
}
|
|
|
|
json get_formated_generation(llama_client_slot &slot)
|
|
{
|
|
const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
|
|
const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
|
|
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
|
|
return json {
|
|
{"n_ctx", slot.n_ctx},
|
|
{"model", params.model_alias},
|
|
{"seed", slot.params.seed},
|
|
{"temperature", slot.sparams.temp},
|
|
{"top_k", slot.sparams.top_k},
|
|
{"top_p", slot.sparams.top_p},
|
|
{"min_p", slot.sparams.min_p},
|
|
{"tfs_z", slot.sparams.tfs_z},
|
|
{"typical_p", slot.sparams.typical_p},
|
|
{"repeat_last_n", slot.sparams.penalty_last_n},
|
|
{"repeat_penalty", slot.sparams.penalty_repeat},
|
|
{"presence_penalty", slot.sparams.penalty_present},
|
|
{"frequency_penalty", slot.sparams.penalty_freq},
|
|
{"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
|
|
{"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
|
|
{"mirostat", slot.sparams.mirostat},
|
|
{"mirostat_tau", slot.sparams.mirostat_tau},
|
|
{"mirostat_eta", slot.sparams.mirostat_eta},
|
|
{"penalize_nl", slot.sparams.penalize_nl},
|
|
{"stop", slot.params.antiprompt},
|
|
{"n_predict", slot.params.n_predict},
|
|
{"n_keep", params.n_keep},
|
|
{"ignore_eos", ignore_eos},
|
|
{"stream", slot.params.stream},
|
|
{"logit_bias", slot.sparams.logit_bias},
|
|
{"n_probs", slot.sparams.n_probs},
|
|
{"grammar", slot.sparams.grammar},
|
|
};
|
|
}
|
|
|
|
void send_partial_response(llama_client_slot &slot, completion_token_output tkn)
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_results);
|
|
task_result res;
|
|
res.id = slot.task_id;
|
|
res.multitask_id = slot.multitask_id;
|
|
res.error = false;
|
|
res.stop = false;
|
|
|
|
res.result_json = json
|
|
{
|
|
{"content", tkn.text_to_send},
|
|
{"stop", false},
|
|
{"slot_id", slot.id},
|
|
{"multimodal", multimodal}
|
|
};
|
|
|
|
if (slot.sparams.n_probs > 0)
|
|
{
|
|
std::vector<completion_token_output> probs_output = {};
|
|
const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
|
|
size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size());
|
|
size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size());
|
|
if (probs_pos < probs_stop_pos)
|
|
{
|
|
probs_output = std::vector<completion_token_output>(slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos);
|
|
}
|
|
slot.sent_token_probs_index = probs_stop_pos;
|
|
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
|
|
}
|
|
|
|
if (slot.oaicompat)
|
|
{
|
|
res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
|
|
res.result_json["model"] = slot.oaicompat_model;
|
|
}
|
|
|
|
queue_results.push_back(res);
|
|
condition_results.notify_all();
|
|
}
|
|
|
|
void send_final_response(llama_client_slot &slot)
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_results);
|
|
task_result res;
|
|
res.id = slot.task_id;
|
|
res.multitask_id = slot.multitask_id;
|
|
res.error = false;
|
|
res.stop = true;
|
|
|
|
res.result_json = json
|
|
{
|
|
{"content", !slot.params.stream ? slot.generated_text : ""},
|
|
{"slot_id", slot.id},
|
|
{"stop", true},
|
|
{"model", params.model_alias},
|
|
{"tokens_predicted", slot.n_decoded},
|
|
{"tokens_evaluated", slot.num_prompt_tokens},
|
|
{"generation_settings", get_formated_generation(slot)},
|
|
{"prompt", slot.prompt},
|
|
{"truncated", slot.truncated},
|
|
{"stopped_eos", slot.stopped_eos},
|
|
{"stopped_word", slot.stopped_word},
|
|
{"stopped_limit", slot.stopped_limit},
|
|
{"stopping_word", slot.stopping_word},
|
|
{"tokens_cached", slot.n_past},
|
|
{"timings", slot.get_formated_timings()}
|
|
};
|
|
|
|
if (slot.sparams.n_probs > 0)
|
|
{
|
|
std::vector<completion_token_output> probs = {};
|
|
if (!slot.params.stream && slot.stopped_word)
|
|
{
|
|
const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
|
|
probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size());
|
|
}
|
|
else
|
|
{
|
|
probs = std::vector<completion_token_output>(
|
|
slot.generated_token_probs.begin(),
|
|
slot.generated_token_probs.begin() + slot.sent_token_probs_index);
|
|
}
|
|
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs);
|
|
}
|
|
|
|
if (slot.oaicompat)
|
|
{
|
|
res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
|
|
res.result_json["model"] = slot.oaicompat_model;
|
|
}
|
|
|
|
// parent multitask, if any, needs to be updated
|
|
if (slot.multitask_id != -1)
|
|
{
|
|
update_multi_task(slot.multitask_id, slot.task_id, res);
|
|
}
|
|
|
|
queue_results.push_back(res);
|
|
condition_results.notify_all();
|
|
}
|
|
|
|
void send_embedding(llama_client_slot &slot)
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_results);
|
|
task_result res;
|
|
res.id = slot.task_id;
|
|
res.multitask_id = slot.multitask_id;
|
|
res.error = false;
|
|
res.stop = true;
|
|
|
|
const int n_embd = llama_n_embd(model);
|
|
if (!params.embedding)
|
|
{
|
|
LOG_WARNING("embedding disabled", {
|
|
{"params.embedding", params.embedding},
|
|
});
|
|
res.result_json = json
|
|
{
|
|
{"embedding", std::vector<float>(n_embd, 0.0f)},
|
|
};
|
|
}
|
|
else
|
|
{
|
|
const float *data = llama_get_embeddings(ctx);
|
|
std::vector<float> embedding(data, data + n_embd);
|
|
res.result_json = json
|
|
{
|
|
{"embedding", embedding },
|
|
};
|
|
}
|
|
queue_results.push_back(res);
|
|
condition_results.notify_all();
|
|
}
|
|
|
|
int request_completion(json data, bool infill, bool embedding, int multitask_id)
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
task_server task;
|
|
task.id = id_gen++;
|
|
task.target_id = 0;
|
|
task.data = std::move(data);
|
|
task.infill_mode = infill;
|
|
task.embedding_mode = embedding;
|
|
task.type = COMPLETION_TASK;
|
|
task.multitask_id = multitask_id;
|
|
|
|
// when a completion task's prompt array is not a singleton, we split it into multiple requests
|
|
if (task.data.at("prompt").size() > 1)
|
|
{
|
|
lock.unlock(); // entering new func scope
|
|
return split_multiprompt_task(task);
|
|
}
|
|
|
|
// otherwise, it's a single-prompt task, we actually queue it
|
|
queue_tasks.push_back(task);
|
|
condition_tasks.notify_one();
|
|
return task.id;
|
|
}
|
|
|
|
task_result next_result(int task_id)
|
|
{
|
|
while (true)
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_results);
|
|
condition_results.wait(lock, [&]{
|
|
return !queue_results.empty();
|
|
});
|
|
|
|
for (int i = 0; i < (int) queue_results.size(); i++)
|
|
{
|
|
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
|
|
if (queue_results[i].multitask_id == task_id)
|
|
{
|
|
update_multi_task(task_id, queue_results[i].id, queue_results[i]);
|
|
queue_results.erase(queue_results.begin() + i);
|
|
continue;
|
|
}
|
|
|
|
if (queue_results[i].id == task_id)
|
|
{
|
|
assert(queue_results[i].multitask_id == -1);
|
|
task_result res = queue_results[i];
|
|
queue_results.erase(queue_results.begin() + i);
|
|
return res;
|
|
}
|
|
}
|
|
}
|
|
|
|
// never reached
|
|
//return task_result{-1, false, false, {}};
|
|
}
|
|
|
|
// for multiple images processing
|
|
bool ingest_images(llama_client_slot &slot, int n_batch)
|
|
{
|
|
int image_idx = 0;
|
|
|
|
while (image_idx < (int) slot.images.size())
|
|
{
|
|
slot_image &img = slot.images[image_idx];
|
|
|
|
// process prefix prompt
|
|
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
|
|
{
|
|
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
|
llama_batch batch_view = {
|
|
n_tokens,
|
|
batch.token + i,
|
|
nullptr,
|
|
batch.pos + i,
|
|
batch.n_seq_id + i,
|
|
batch.seq_id + i,
|
|
batch.logits + i,
|
|
0, 0, 0, // unused
|
|
};
|
|
if (llama_decode(ctx, batch_view))
|
|
{
|
|
LOG_TEE("%s : failed to eval\n", __func__);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// process image with llm
|
|
for (int i = 0; i < img.image_tokens; i += n_batch)
|
|
{
|
|
int n_eval = img.image_tokens - i;
|
|
if (n_eval > n_batch)
|
|
{
|
|
n_eval = n_batch;
|
|
}
|
|
|
|
const int n_embd = llama_n_embd(model);
|
|
llama_batch batch_img = { n_eval, nullptr, (img.image_embedding + i * n_embd), nullptr, nullptr, nullptr, nullptr, slot.n_past, 1, 0, };
|
|
if (llama_decode(ctx, batch_img))
|
|
{
|
|
LOG_TEE("%s : failed to eval image\n", __func__);
|
|
return false;
|
|
}
|
|
slot.n_past += n_eval;
|
|
}
|
|
image_idx++;
|
|
|
|
llama_batch_clear(batch);
|
|
|
|
// append prefix of next image
|
|
const auto json_prompt = (image_idx >= (int) slot.images.size()) ?
|
|
slot.params.input_suffix : // no more images, then process suffix prompt
|
|
(json)(slot.images[image_idx].prefix_prompt);
|
|
|
|
std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
|
|
for (int i = 0; i < (int) append_tokens.size(); ++i)
|
|
{
|
|
llama_batch_add(batch, append_tokens[i], slot.n_past, { slot.id }, true);
|
|
slot.n_past += 1;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void request_cancel(int task_id)
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
task_server task;
|
|
task.id = id_gen++;
|
|
task.type = CANCEL_TASK;
|
|
task.target_id = task_id;
|
|
queue_tasks.push_back(task);
|
|
condition_tasks.notify_one();
|
|
}
|
|
|
|
int split_multiprompt_task(task_server& multiprompt_task)
|
|
{
|
|
int prompt_count = multiprompt_task.data.at("prompt").size();
|
|
assert(prompt_count > 1);
|
|
|
|
int multitask_id = id_gen++;
|
|
std::vector<int> subtask_ids(prompt_count);
|
|
for (int i = 0; i < prompt_count; i++)
|
|
{
|
|
json subtask_data = multiprompt_task.data;
|
|
subtask_data["prompt"] = subtask_data["prompt"][i];
|
|
|
|
// subtasks inherit everything else (infill mode, embedding mode, etc.)
|
|
subtask_ids[i] = request_completion(subtask_data, multiprompt_task.infill_mode, multiprompt_task.embedding_mode, multitask_id);
|
|
}
|
|
|
|
// queue up the multitask so we can track its subtask progression
|
|
add_multi_task(multitask_id, subtask_ids);
|
|
return multitask_id;
|
|
}
|
|
|
|
void process_tasks()
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
while (!queue_tasks.empty())
|
|
{
|
|
task_server task = queue_tasks.front();
|
|
queue_tasks.erase(queue_tasks.begin());
|
|
switch (task.type)
|
|
{
|
|
case COMPLETION_TASK: {
|
|
llama_client_slot *slot = get_slot(json_value(task.data, "slot_id", -1));
|
|
if (slot == nullptr)
|
|
{
|
|
LOG_TEE("slot unavailable\n");
|
|
// send error result
|
|
send_error(task, "slot unavailable");
|
|
return;
|
|
}
|
|
|
|
if (task.data.contains("system_prompt"))
|
|
{
|
|
process_system_prompt_data(task.data["system_prompt"]);
|
|
}
|
|
|
|
slot->reset();
|
|
|
|
slot->infill = task.infill_mode;
|
|
slot->embedding = task.embedding_mode;
|
|
slot->task_id = task.id;
|
|
slot->multitask_id = task.multitask_id;
|
|
|
|
if (!launch_slot_with_data(slot, task.data))
|
|
{
|
|
// send error result
|
|
send_error(task, "internal_error");
|
|
break;
|
|
}
|
|
} break;
|
|
case CANCEL_TASK: { // release slot linked with the task id
|
|
for (auto & slot : slots)
|
|
{
|
|
if (slot.task_id == task.target_id)
|
|
{
|
|
slot.release();
|
|
break;
|
|
}
|
|
}
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// remove finished multitasks from the queue of multitasks, and add the corresponding result to the result queue
|
|
auto queue_iterator = queue_multitasks.begin();
|
|
while (queue_iterator != queue_multitasks.end())
|
|
{
|
|
if (queue_iterator->subtasks_remaining.empty())
|
|
{
|
|
// all subtasks done == multitask is done
|
|
task_result aggregate_result;
|
|
aggregate_result.id = queue_iterator->id;
|
|
aggregate_result.stop = true;
|
|
aggregate_result.error = false;
|
|
|
|
// collect json results into one json result
|
|
std::vector<json> result_jsons;
|
|
for (auto& subres : queue_iterator->results)
|
|
{
|
|
result_jsons.push_back(subres.result_json);
|
|
aggregate_result.error = aggregate_result.error && subres.error;
|
|
}
|
|
aggregate_result.result_json = json{ "results", result_jsons };
|
|
|
|
std::lock_guard<std::mutex> lock(mutex_results);
|
|
queue_results.push_back(aggregate_result);
|
|
condition_results.notify_all();
|
|
|
|
queue_iterator = queue_multitasks.erase(queue_iterator);
|
|
}
|
|
else
|
|
{
|
|
++queue_iterator;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool update_slots() {
|
|
// attend tasks
|
|
process_tasks();
|
|
|
|
// update the system prompt wait until all slots are idle state
|
|
if (system_need_update && all_slots_are_idle)
|
|
{
|
|
LOG_TEE("updating system prompt\n");
|
|
update_system_prompt();
|
|
}
|
|
|
|
llama_batch_clear(batch);
|
|
|
|
if (all_slots_are_idle)
|
|
{
|
|
if (system_prompt.empty() && clean_kv_cache)
|
|
{
|
|
LOG_TEE("all slots are idle and system prompt is empty, clear the KV cache\n");
|
|
kv_cache_clear();
|
|
}
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
condition_tasks.wait(lock, [&]{
|
|
return !queue_tasks.empty();
|
|
});
|
|
}
|
|
|
|
for (llama_client_slot &slot : slots)
|
|
{
|
|
if (slot.is_processing() && slot.cache_tokens.size() >= (size_t) slot.n_ctx)
|
|
{
|
|
// Shift context
|
|
const int n_left = slot.n_past - slot.params.n_keep - 1;
|
|
const int n_discard = n_left / 2;
|
|
|
|
LOG_TEE("slot %d: context shift - n_keep = %d, n_left = %d, n_discard = %d\n", slot.id, slot.params.n_keep, n_left, n_discard);
|
|
llama_kv_cache_seq_rm (ctx, slot.id, slot.params.n_keep + 1 , slot.params.n_keep + n_discard + 1);
|
|
llama_kv_cache_seq_shift(ctx, slot.id, slot.params.n_keep + 1 + n_discard, slot.n_past, -n_discard);
|
|
|
|
for (size_t i = slot.params.n_keep + 1 + n_discard; i < slot.cache_tokens.size(); i++)
|
|
{
|
|
slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
|
|
}
|
|
|
|
slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
|
|
|
|
slot.n_past -= n_discard;
|
|
|
|
slot.truncated = true;
|
|
|
|
LOG_VERBOSE("context shift", {
|
|
{"n_ctx", n_ctx},
|
|
{"n_keep", params.n_keep},
|
|
{"n_left", n_left},
|
|
});
|
|
}
|
|
}
|
|
|
|
// decode any currently ongoing sequences
|
|
for (auto & slot : slots)
|
|
{
|
|
// release the slot
|
|
if (slot.command == RELEASE)
|
|
{
|
|
slot.state = IDLE;
|
|
slot.command = NONE;
|
|
slot.t_last_used = ggml_time_us();
|
|
|
|
LOG_TEE("slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());
|
|
|
|
continue;
|
|
}
|
|
|
|
if (slot.state == IDLE)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
slot.i_batch = batch.n_tokens;
|
|
|
|
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot.n_past, { slot.id }, true);
|
|
|
|
slot.n_decoded += 1;
|
|
slot.n_past += 1;
|
|
}
|
|
|
|
// process in chunks of params.n_batch
|
|
int32_t n_batch = params.n_batch;
|
|
|
|
// assign workload to the slots
|
|
if (params.cont_batching || batch.n_tokens == 0)
|
|
{
|
|
for (auto & slot : slots)
|
|
{
|
|
const bool has_prompt = slot.prompt.is_array() || (slot.prompt.is_string() && !slot.prompt.get<std::string>().empty()) || !slot.images.empty();
|
|
|
|
// empty prompt passed -> release the slot and send empty response
|
|
if (slot.state == IDLE && slot.command == LOAD_PROMPT && !has_prompt)
|
|
{
|
|
slot.release();
|
|
slot.print_timings();
|
|
send_final_response(slot);
|
|
continue;
|
|
}
|
|
|
|
// need process the prompt
|
|
if (slot.state == IDLE && slot.command == LOAD_PROMPT)
|
|
{
|
|
slot.state = PROCESSING;
|
|
slot.command = NONE;
|
|
std::vector<llama_token> prompt_tokens;
|
|
slot.t_start_process_prompt = ggml_time_us();
|
|
slot.t_start_genereration = 0;
|
|
|
|
if (slot.infill)
|
|
{
|
|
bool suff_rm_leading_spc = true;
|
|
if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1)
|
|
{
|
|
params.input_suffix.erase(0, 1);
|
|
suff_rm_leading_spc = false;
|
|
}
|
|
auto prefix_tokens = tokenize(slot.params.input_prefix, false);
|
|
auto suffix_tokens = tokenize(slot.params.input_suffix, false);
|
|
|
|
const int space_token = 29871; // TODO: this should not be hardcoded
|
|
if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) {
|
|
suffix_tokens.erase(suffix_tokens.begin());
|
|
}
|
|
|
|
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
|
|
prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
|
|
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
|
|
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
|
|
prefix_tokens.push_back(llama_token_middle(model));
|
|
prompt_tokens = prefix_tokens;
|
|
}
|
|
else
|
|
{
|
|
prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt
|
|
}
|
|
|
|
slot.num_prompt_tokens = prompt_tokens.size();
|
|
|
|
if (slot.params.n_keep < 0)
|
|
{
|
|
slot.params.n_keep = slot.num_prompt_tokens;
|
|
}
|
|
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
|
|
|
|
// if input prompt is too big, truncate it
|
|
if (slot.num_prompt_tokens >= slot.n_ctx)
|
|
{
|
|
const int n_left = slot.n_ctx - slot.params.n_keep;
|
|
const int n_block_size = n_left / 2;
|
|
const int erased_blocks = (slot.num_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
|
|
|
|
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep);
|
|
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end());
|
|
|
|
LOG_VERBOSE("input truncated", {
|
|
{"n_ctx", slot.n_ctx},
|
|
{"n_keep", slot.params.n_keep},
|
|
{"n_left", n_left},
|
|
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
|
|
});
|
|
slot.truncated = true;
|
|
prompt_tokens = new_tokens;
|
|
|
|
slot.num_prompt_tokens = prompt_tokens.size();
|
|
GGML_ASSERT(slot.num_prompt_tokens < slot.n_ctx);
|
|
}
|
|
|
|
if (!slot.params.cache_prompt)
|
|
{
|
|
llama_sampling_reset(slot.ctx_sampling);
|
|
|
|
slot.n_past = 0;
|
|
slot.num_prompt_tokens_processed = slot.num_prompt_tokens;
|
|
}
|
|
else
|
|
{
|
|
// push the prompt into the sampling context (do not apply grammar)
|
|
for (auto &token : prompt_tokens)
|
|
{
|
|
llama_sampling_accept(slot.ctx_sampling, ctx, token, false);
|
|
}
|
|
|
|
slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
|
|
slot.num_prompt_tokens_processed = slot.num_prompt_tokens - slot.n_past;
|
|
|
|
LOG_TEE("slot %d : in cache: %i tokens | to process: %i tokens\n", slot.id, slot.n_past, slot.num_prompt_tokens_processed);
|
|
}
|
|
|
|
LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past);
|
|
|
|
llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1);
|
|
|
|
slot.cache_tokens = prompt_tokens;
|
|
|
|
if (slot.n_past == slot.num_prompt_tokens)
|
|
{
|
|
// we have to evaluate at least 1 token to generate logits.
|
|
LOG_TEE("slot %d : we have to evaluate at least 1 token to generate logits\n", slot.id);
|
|
slot.n_past--;
|
|
}
|
|
|
|
LOG_VERBOSE("prompt ingested", {
|
|
{"n_past", slot.n_past},
|
|
{"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
|
|
{"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())},
|
|
});
|
|
|
|
const bool has_images = process_images(slot);
|
|
|
|
// process the prefix of first image
|
|
std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
|
|
for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
|
|
{
|
|
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot.n_past, { slot.id }, false);
|
|
}
|
|
|
|
if (has_images && !ingest_images(slot, n_batch))
|
|
{
|
|
LOG_TEE("failed processing images\n");
|
|
return false;
|
|
}
|
|
|
|
// extract the logits only for the last token
|
|
if (batch.n_tokens > 0)
|
|
{
|
|
batch.logits[batch.n_tokens - 1] = true;
|
|
}
|
|
|
|
slot.n_decoded = 0;
|
|
slot.i_batch = batch.n_tokens - 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (batch.n_tokens == 0)
|
|
{
|
|
all_slots_are_idle = true;
|
|
return true;
|
|
}
|
|
|
|
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
|
|
{
|
|
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
|
llama_batch batch_view =
|
|
{
|
|
n_tokens,
|
|
batch.token + i,
|
|
nullptr,
|
|
batch.pos + i,
|
|
batch.n_seq_id + i,
|
|
batch.seq_id + i,
|
|
batch.logits + i,
|
|
0, 0, 0, // unused
|
|
};
|
|
|
|
const int ret = llama_decode(ctx, batch_view);
|
|
if (ret != 0)
|
|
{
|
|
if (n_batch == 1 || ret < 0)
|
|
{
|
|
// if you get here, it means the KV cache is full - try increasing it via the context size
|
|
LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
|
|
return false;
|
|
}
|
|
|
|
LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
|
|
|
|
// retry with half the batch size to try to find a free slot in the KV cache
|
|
n_batch /= 2;
|
|
i -= n_batch;
|
|
continue;
|
|
}
|
|
|
|
for (auto & slot : slots)
|
|
{
|
|
if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
// prompt evaluated for embedding
|
|
if (slot.embedding)
|
|
{
|
|
send_embedding(slot);
|
|
slot.release();
|
|
slot.i_batch = -1;
|
|
return true;
|
|
}
|
|
|
|
completion_token_output result;
|
|
const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);
|
|
|
|
llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
|
|
|
|
if (slot.n_decoded == 1)
|
|
{
|
|
slot.t_start_genereration = ggml_time_us();
|
|
slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3;
|
|
}
|
|
|
|
llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
|
|
result.tok = id;
|
|
|
|
const int32_t n_probs = slot.sparams.n_probs;
|
|
if (slot.sparams.temp <= 0 && n_probs > 0)
|
|
{
|
|
// for llama_sample_token_greedy we need to sort candidates
|
|
llama_sample_softmax(ctx, &cur_p);
|
|
}
|
|
|
|
for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i)
|
|
{
|
|
result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p});
|
|
}
|
|
|
|
if (!process_token(result, slot))
|
|
{
|
|
slot.release();
|
|
slot.print_timings();
|
|
send_final_response(slot);
|
|
}
|
|
|
|
slot.i_batch = -1;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
|
const server_params &sparams)
|
|
{
|
|
printf("usage: %s [options]\n", argv0);
|
|
printf("\n");
|
|
printf("options:\n");
|
|
printf(" -h, --help show this help message and exit\n");
|
|
printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
|
|
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
|
printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
|
|
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
|
printf(" --rope-scaling {none,linear,yarn}\n");
|
|
printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
|
|
printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
|
|
printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
|
|
printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
|
|
printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
|
|
printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
|
|
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
|
|
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
|
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
|
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
|
|
if (llama_mlock_supported())
|
|
{
|
|
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
|
}
|
|
if (llama_mmap_supported())
|
|
{
|
|
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
|
}
|
|
printf(" --numa attempt optimizations that help on some NUMA systems\n");
|
|
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
|
printf(" -ngl N, --n-gpu-layers N\n");
|
|
printf(" number of layers to store in VRAM\n");
|
|
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
|
printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
|
|
printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
|
|
printf(" -nommq, --no-mul-mat-q\n");
|
|
printf(" use cuBLAS instead of custom mul_mat_q CUDA kernels.\n");
|
|
printf(" Not recommended since this is both slower and uses more VRAM.\n");
|
|
#endif
|
|
printf(" -m FNAME, --model FNAME\n");
|
|
printf(" model path (default: %s)\n", params.model.c_str());
|
|
printf(" -a ALIAS, --alias ALIAS\n");
|
|
printf(" set an alias for the model, will be added as `model` field in completion response\n");
|
|
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
|
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
|
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
|
|
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
|
|
printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
|
|
printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
|
|
printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
|
|
printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
|
|
printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
|
|
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
|
|
printf(" -spf FNAME, --system-prompt-file FNAME\n");
|
|
printf(" Set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
|
|
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
|
|
printf(" --log-disable disables logging to a file.\n");
|
|
printf("\n");
|
|
}
|
|
|
|
static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|
gpt_params ¶ms, llama_server_context& llama)
|
|
{
|
|
gpt_params default_params;
|
|
server_params default_sparams;
|
|
std::string arg;
|
|
bool invalid_param = false;
|
|
|
|
for (int i = 1; i < argc; i++)
|
|
{
|
|
arg = argv[i];
|
|
if (arg == "--port")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.port = std::stoi(argv[i]);
|
|
}
|
|
else if (arg == "--host")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.hostname = argv[i];
|
|
}
|
|
else if (arg == "--path")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.public_path = argv[i];
|
|
}
|
|
else if (arg == "--api-key")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.api_key = argv[i];
|
|
}
|
|
else if (arg == "--timeout" || arg == "-to")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.read_timeout = std::stoi(argv[i]);
|
|
sparams.write_timeout = std::stoi(argv[i]);
|
|
}
|
|
else if (arg == "-m" || arg == "--model")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.model = argv[i];
|
|
}
|
|
else if (arg == "-a" || arg == "--alias")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.model_alias = argv[i];
|
|
}
|
|
else if (arg == "-h" || arg == "--help")
|
|
{
|
|
server_print_usage(argv[0], default_params, default_sparams);
|
|
exit(0);
|
|
}
|
|
else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_ctx = std::stoi(argv[i]);
|
|
}
|
|
else if (arg == "--rope-scaling")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
std::string value(argv[i]);
|
|
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
|
|
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
|
|
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
|
|
else { invalid_param = true; break; }
|
|
}
|
|
else if (arg == "--rope-freq-base")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.rope_freq_base = std::stof(argv[i]);
|
|
}
|
|
else if (arg == "--rope-freq-scale")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.rope_freq_scale = std::stof(argv[i]);
|
|
}
|
|
else if (arg == "--yarn-ext-factor")
|
|
{
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.yarn_ext_factor = std::stof(argv[i]);
|
|
}
|
|
else if (arg == "--yarn-attn-factor")
|
|
{
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.yarn_attn_factor = std::stof(argv[i]);
|
|
}
|
|
else if (arg == "--yarn-beta-fast")
|
|
{
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.yarn_beta_fast = std::stof(argv[i]);
|
|
}
|
|
else if (arg == "--yarn-beta-slow")
|
|
{
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.yarn_beta_slow = std::stof(argv[i]);
|
|
}
|
|
else if (arg == "--threads" || arg == "-t")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_threads = std::stoi(argv[i]);
|
|
}
|
|
else if (arg == "--threads-batch" || arg == "-tb")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_threads_batch = std::stoi(argv[i]);
|
|
}
|
|
else if (arg == "-b" || arg == "--batch-size")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_batch = std::stoi(argv[i]);
|
|
params.n_batch = std::min(512, params.n_batch);
|
|
}
|
|
else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
|
params.n_gpu_layers = std::stoi(argv[i]);
|
|
#else
|
|
LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
|
|
"See main README.md for information on enabling GPU BLAS support",
|
|
{{"n_gpu_layers", params.n_gpu_layers}});
|
|
#endif
|
|
}
|
|
else if (arg == "--tensor-split" || arg == "-ts")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
#ifdef GGML_USE_CUBLAS
|
|
std::string arg_next = argv[i];
|
|
|
|
// split string by , and /
|
|
const std::regex regex{R"([,/]+)"};
|
|
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
|
|
std::vector<std::string> split_arg{it, {}};
|
|
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
|
|
|
|
for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device)
|
|
{
|
|
if (i_device < split_arg.size())
|
|
{
|
|
params.tensor_split[i_device] = std::stof(split_arg[i_device]);
|
|
}
|
|
else
|
|
{
|
|
params.tensor_split[i_device] = 0.0f;
|
|
}
|
|
}
|
|
#else
|
|
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
|
|
#endif // GGML_USE_CUBLAS
|
|
}
|
|
else if (arg == "--no-mul-mat-q" || arg == "-nommq")
|
|
{
|
|
#ifdef GGML_USE_CUBLAS
|
|
params.mul_mat_q = false;
|
|
#else
|
|
LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n", {});
|
|
#endif // GGML_USE_CUBLAS
|
|
}
|
|
else if (arg == "--main-gpu" || arg == "-mg")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
#ifdef GGML_USE_CUBLAS
|
|
params.main_gpu = std::stoi(argv[i]);
|
|
#else
|
|
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
|
|
#endif
|
|
}
|
|
else if (arg == "--lora")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f));
|
|
params.use_mmap = false;
|
|
}
|
|
else if (arg == "--lora-scaled")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
const char * lora_adapter = argv[i];
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i])));
|
|
params.use_mmap = false;
|
|
}
|
|
else if (arg == "--lora-base")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.lora_base = argv[i];
|
|
}
|
|
else if (arg == "-v" || arg == "--verbose")
|
|
{
|
|
#if SERVER_VERBOSE != 1
|
|
LOG_WARNING("server.cpp is not built with verbose logging.", {});
|
|
#else
|
|
server_verbose = true;
|
|
#endif
|
|
}
|
|
else if (arg == "--mlock")
|
|
{
|
|
params.use_mlock = true;
|
|
}
|
|
else if (arg == "--no-mmap")
|
|
{
|
|
params.use_mmap = false;
|
|
}
|
|
else if (arg == "--numa")
|
|
{
|
|
params.numa = true;
|
|
}
|
|
else if (arg == "--embedding")
|
|
{
|
|
params.embedding = true;
|
|
}
|
|
else if (arg == "-cb" || arg == "--cont-batching")
|
|
{
|
|
params.cont_batching = true;
|
|
}
|
|
else if (arg == "-np" || arg == "--parallel")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_parallel = std::stoi(argv[i]);
|
|
} else if (arg == "-n" || arg == "--n-predict")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_predict = std::stoi(argv[i]);
|
|
} else if (arg == "-spf" || arg == "--system-prompt-file")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
std::ifstream file(argv[i]);
|
|
if (!file) {
|
|
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
std::string systm_content;
|
|
std::copy(
|
|
std::istreambuf_iterator<char>(file),
|
|
std::istreambuf_iterator<char>(),
|
|
std::back_inserter(systm_content)
|
|
);
|
|
llama.process_system_prompt_data(json::parse(systm_content));
|
|
}
|
|
else if(arg == "--mmproj")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.mmproj = argv[i];
|
|
}
|
|
else if (arg == "--log-disable")
|
|
{
|
|
log_set_target(stdout);
|
|
LOG_INFO("logging to file is disabled.", {});
|
|
}
|
|
else
|
|
{
|
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
|
server_print_usage(argv[0], default_params, default_sparams);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
if (invalid_param)
|
|
{
|
|
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
|
server_print_usage(argv[0], default_params, default_sparams);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
|
|
static std::string random_string()
|
|
{
|
|
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
|
|
|
|
std::random_device rd;
|
|
std::mt19937 generator(rd());
|
|
|
|
std::string result(32, ' ');
|
|
|
|
for (int i = 0; i < 32; ++i) {
|
|
result[i] = str[generator() % str.size()];
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static std::string gen_chatcmplid()
|
|
{
|
|
std::stringstream chatcmplid;
|
|
chatcmplid << "chatcmpl-" << random_string();
|
|
return chatcmplid.str();
|
|
}
|
|
|
|
std::string format_chatml(std::vector<json> messages)
|
|
{
|
|
std::ostringstream chatml_msgs;
|
|
|
|
for (auto it = messages.begin(); it != messages.end(); ++it) {
|
|
chatml_msgs << "<|im_start|>"
|
|
<< json_value(*it, "role", std::string("user")) << '\n';
|
|
chatml_msgs << json_value(*it, "content", std::string(""))
|
|
<< "<|im_end|>\n";
|
|
}
|
|
|
|
chatml_msgs << "<|im_start|>assistant" << '\n';
|
|
|
|
return chatml_msgs.str();
|
|
}
|
|
|
|
/* llama.cpp completion api semantics */
|
|
json oaicompat_completion_params_parse(
|
|
const json &body /* openai api json semantics */)
|
|
{
|
|
json llama_params;
|
|
|
|
llama_params["__oaicompat"] = true;
|
|
|
|
// Map OpenAI parameters to llama.cpp parameters
|
|
//
|
|
// For parameters that are defined by the OpenAI documentation (e.g.
|
|
// temperature), we explicitly specify OpenAI's intended default; we
|
|
// need to do that because sometimes OpenAI disagrees with llama.cpp
|
|
//
|
|
// https://platform.openai.com/docs/api-reference/chat/create
|
|
llama_sampling_params default_sparams;
|
|
llama_params["model"] = json_value(body, "model", std::string("uknown"));
|
|
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
|
|
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
|
|
llama_params["temperature"] = json_value(body, "temperature", 0.0);
|
|
llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
|
|
llama_params["top_p"] = json_value(body, "top_p", 1.0);
|
|
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
|
|
llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
|
|
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
|
|
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
|
|
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
|
|
llama_params["stream"] = json_value(body, "stream", false);
|
|
llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
|
|
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
|
|
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
|
|
llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
|
|
llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
|
|
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
|
|
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
|
|
llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
|
|
|
|
if (body.count("grammar") != 0) {
|
|
llama_params["grammar"] = json_value(body, "grammar", json::object());
|
|
}
|
|
|
|
// Handle 'stop' field
|
|
if (body.contains("stop") && body["stop"].is_string()) {
|
|
llama_params["stop"] = json::array({body["stop"].get<std::string>()});
|
|
} else {
|
|
llama_params["stop"] = json_value(body, "stop", json::array());
|
|
}
|
|
|
|
// Ensure there is ChatML-specific end sequence among stop words
|
|
llama_params["stop"].push_back("<|im_end|>");
|
|
|
|
return llama_params;
|
|
}
|
|
|
|
static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
|
|
{
|
|
json result = response.result_json;
|
|
|
|
bool stopped_word = result.count("stopped_word") != 0;
|
|
bool stopped_eos = json_value(result, "stopped_eos", false);
|
|
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
|
|
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
|
|
std::string content = json_value(result, "content", std::string(""));
|
|
|
|
std::string finish_reason = "length";
|
|
if (stopped_word || stopped_eos) {
|
|
finish_reason = "stop";
|
|
}
|
|
|
|
json choices =
|
|
streaming ? json::array({json{{"finish_reason", finish_reason},
|
|
{"index", 0},
|
|
{"delta", json::object()}}})
|
|
: json::array({json{{"finish_reason", finish_reason},
|
|
{"index", 0},
|
|
{"message", json{{"content", content},
|
|
{"role", "assistant"}}}}});
|
|
|
|
std::time_t t = std::time(0);
|
|
|
|
json res =
|
|
json{{"choices", choices},
|
|
{"created", t},
|
|
{"model",
|
|
json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
|
|
{"object", streaming ? "chat.completion.chunk" : "chat.completion"},
|
|
{"usage",
|
|
json{{"completion_tokens", num_tokens_predicted},
|
|
{"prompt_tokens", num_prompt_tokens},
|
|
{"total_tokens", num_tokens_predicted + num_prompt_tokens}}},
|
|
{"id", gen_chatcmplid()}};
|
|
|
|
if (server_verbose) {
|
|
res["__verbose"] = result;
|
|
}
|
|
|
|
if (result.contains("completion_probabilities")) {
|
|
res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
// return value is vector as there is one case where we might need to generate two responses
|
|
static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
|
|
json result = response.result_json;
|
|
|
|
if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
|
|
return std::vector<json>({response.result_json});
|
|
}
|
|
|
|
bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
|
|
std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
|
|
|
|
bool stopped_word = json_value(result, "stopped_word", false);
|
|
bool stopped_eos = json_value(result, "stopped_eos", false);
|
|
bool stopped_limit = json_value(result, "stopped_limit", false);
|
|
std::string content = json_value(result, "content", std::string(""));
|
|
|
|
std::string finish_reason;
|
|
if (stopped_word || stopped_eos) {
|
|
finish_reason = "stop";
|
|
}
|
|
if (stopped_limit) {
|
|
finish_reason = "length";
|
|
}
|
|
|
|
std::time_t t = std::time(0);
|
|
|
|
json choices;
|
|
|
|
if (!finish_reason.empty()) {
|
|
choices = json::array({json{{"finish_reason", finish_reason},
|
|
{"index", 0},
|
|
{"delta", json::object()}}});
|
|
} else {
|
|
if (first) {
|
|
if (content.empty()) {
|
|
choices = json::array({json{{"finish_reason", nullptr},
|
|
{"index", 0},
|
|
{"delta", json{{"role", "assistant"}}}}});
|
|
} else {
|
|
// We have to send this as two updates to conform to openai behavior
|
|
json initial_ret = json{{"choices", json::array({json{
|
|
{"finish_reason", nullptr},
|
|
{"index", 0},
|
|
{"delta", json{
|
|
{"role", "assistant"}
|
|
}}}})},
|
|
{"created", t},
|
|
{"id", gen_chatcmplid()},
|
|
{"model", modelname},
|
|
{"object", "chat.completion.chunk"}};
|
|
|
|
json second_ret = json{
|
|
{"choices", json::array({json{{"finish_reason", nullptr},
|
|
{"index", 0},
|
|
{"delta", json{
|
|
{"content", content}}}
|
|
}})},
|
|
{"created", t},
|
|
{"id", gen_chatcmplid()},
|
|
{"model", modelname},
|
|
{"object", "chat.completion.chunk"}};
|
|
|
|
return std::vector<json>({initial_ret, second_ret});
|
|
}
|
|
} else {
|
|
// Some idiosyncrasy in task processing logic makes several trailing calls
|
|
// with empty content, we ignore these at the calee site.
|
|
if (content.empty()) {
|
|
return std::vector<json>({json::object()});
|
|
}
|
|
|
|
choices = json::array({json{
|
|
{"finish_reason", nullptr},
|
|
{"index", 0},
|
|
{"delta",
|
|
json{
|
|
{"content", content},
|
|
}},
|
|
}});
|
|
}
|
|
}
|
|
|
|
json ret = json{{"choices", choices},
|
|
{"created", t},
|
|
{"id", gen_chatcmplid()},
|
|
{"model", modelname},
|
|
{"object", "chat.completion.chunk"}};
|
|
|
|
return std::vector<json>({ret});
|
|
}
|
|
|
|
static json format_partial_response(
|
|
llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
|
|
) {
|
|
json res = json
|
|
{
|
|
{"content", content },
|
|
{"stop", false},
|
|
{"slot_id", slot->id },
|
|
{"multimodal", llama.multimodal }
|
|
};
|
|
|
|
if (slot->sparams.n_probs > 0)
|
|
{
|
|
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static json format_tokenizer_response(const std::vector<llama_token> &tokens)
|
|
{
|
|
return json{
|
|
{"tokens", tokens}};
|
|
}
|
|
|
|
static json format_detokenized_response(std::string content)
|
|
{
|
|
return json{
|
|
{"content", content}};
|
|
}
|
|
|
|
|
|
static void log_server_request(const httplib::Request &req, const httplib::Response &res)
|
|
{
|
|
LOG_INFO("request", {
|
|
{"remote_addr", req.remote_addr},
|
|
{"remote_port", req.remote_port},
|
|
{"status", res.status},
|
|
{"method", req.method},
|
|
{"path", req.path},
|
|
{"params", req.params},
|
|
});
|
|
|
|
LOG_VERBOSE("request", {
|
|
{"request", req.body},
|
|
{"response", res.body},
|
|
});
|
|
}
|
|
|
|
struct token_translator
|
|
{
|
|
llama_context * ctx;
|
|
std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
|
|
std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
|
|
};
|
|
|
|
static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, llama_client_slot *slot)
|
|
{
|
|
auto & gtps = slot->generated_token_probs;
|
|
auto translator = token_translator{llama.ctx};
|
|
auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); };
|
|
const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen);
|
|
if (slot->generated_text.capacity() < slot->generated_text.size() + len)
|
|
{
|
|
slot->generated_text.reserve(slot->generated_text.size() + len);
|
|
}
|
|
for (const completion_token_output & cto : gtps)
|
|
{
|
|
slot->generated_text += translator(cto);
|
|
}
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
#if SERVER_VERBOSE != 1
|
|
log_disable();
|
|
#endif
|
|
// own arguments required by this example
|
|
gpt_params params;
|
|
server_params sparams;
|
|
|
|
// struct that contains llama context and inference
|
|
llama_server_context llama;
|
|
|
|
server_params_parse(argc, argv, sparams, params, llama);
|
|
|
|
if (params.model_alias == "unknown")
|
|
{
|
|
params.model_alias = params.model;
|
|
}
|
|
|
|
llama_backend_init(params.numa);
|
|
|
|
LOG_INFO("build info", {{"build", LLAMA_BUILD_NUMBER},
|
|
{"commit", LLAMA_COMMIT}});
|
|
|
|
LOG_INFO("system info", {
|
|
{"n_threads", params.n_threads},
|
|
{"n_threads_batch", params.n_threads_batch},
|
|
{"total_threads", std::thread::hardware_concurrency()},
|
|
{"system_info", llama_print_system_info()},
|
|
});
|
|
|
|
// load the model
|
|
if (!llama.load_model(params))
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
llama.initialize();
|
|
|
|
httplib::Server svr;
|
|
|
|
// Middleware for API key validation
|
|
auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool {
|
|
// If API key is not set, skip validation
|
|
if (sparams.api_key.empty()) {
|
|
return true;
|
|
}
|
|
|
|
// Check for API key in the header
|
|
auto auth_header = req.get_header_value("Authorization");
|
|
std::string prefix = "Bearer ";
|
|
if (auth_header.substr(0, prefix.size()) == prefix) {
|
|
std::string received_api_key = auth_header.substr(prefix.size());
|
|
if (received_api_key == sparams.api_key) {
|
|
return true; // API key is valid
|
|
}
|
|
}
|
|
|
|
// API key is invalid or not provided
|
|
res.set_content("Unauthorized: Invalid API Key", "text/plain; charset=utf-8");
|
|
res.status = 401; // Unauthorized
|
|
|
|
LOG_WARNING("Unauthorized: Invalid API Key", {});
|
|
|
|
return false;
|
|
};
|
|
|
|
svr.set_default_headers({{"Server", "llama.cpp"},
|
|
{"Access-Control-Allow-Origin", "*"},
|
|
{"Access-Control-Allow-Headers", "content-type"}});
|
|
|
|
// this is only called if no index.html is found in the public --path
|
|
svr.Get("/", [](const httplib::Request &, httplib::Response &res)
|
|
{
|
|
res.set_content(reinterpret_cast<const char*>(&index_html), index_html_len, "text/html; charset=utf-8");
|
|
return false;
|
|
});
|
|
|
|
// this is only called if no index.js is found in the public --path
|
|
svr.Get("/index.js", [](const httplib::Request &, httplib::Response &res)
|
|
{
|
|
res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript; charset=utf-8");
|
|
return false;
|
|
});
|
|
|
|
// this is only called if no index.html is found in the public --path
|
|
svr.Get("/completion.js", [](const httplib::Request &, httplib::Response &res)
|
|
{
|
|
res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript; charset=utf-8");
|
|
return false;
|
|
});
|
|
|
|
// this is only called if no index.html is found in the public --path
|
|
svr.Get("/json-schema-to-grammar.mjs", [](const httplib::Request &, httplib::Response &res)
|
|
{
|
|
res.set_content(reinterpret_cast<const char*>(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript; charset=utf-8");
|
|
return false;
|
|
});
|
|
|
|
svr.Get("/props", [&llama](const httplib::Request & /*req*/, httplib::Response &res)
|
|
{
|
|
res.set_header("Access-Control-Allow-Origin", "*");
|
|
json data = {
|
|
{ "user_name", llama.name_user.c_str() },
|
|
{ "assistant_name", llama.name_assistant.c_str() }
|
|
};
|
|
res.set_content(data.dump(), "application/json; charset=utf-8");
|
|
});
|
|
|
|
svr.Post("/completion", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
|
|
{
|
|
if (!validate_api_key(req, res)) {
|
|
return;
|
|
}
|
|
json data = json::parse(req.body);
|
|
const int task_id = llama.request_completion(data, false, false, -1);
|
|
if (!json_value(data, "stream", false)) {
|
|
std::string completion_text;
|
|
task_result result = llama.next_result(task_id);
|
|
if (!result.error && result.stop) {
|
|
res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
|
|
}
|
|
else
|
|
{
|
|
res.status = 404;
|
|
res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
|
|
return;
|
|
}
|
|
} else {
|
|
const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink)
|
|
{
|
|
while (true)
|
|
{
|
|
task_result result = llama.next_result(task_id);
|
|
if (!result.error) {
|
|
const std::string str =
|
|
"data: " +
|
|
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n";
|
|
LOG_VERBOSE("data stream", {
|
|
{ "to_send", str }
|
|
});
|
|
if (!sink.write(str.c_str(), str.size()))
|
|
{
|
|
return false;
|
|
}
|
|
if (result.stop) {
|
|
break;
|
|
}
|
|
} else {
|
|
const std::string str =
|
|
"error: " +
|
|
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n";
|
|
LOG_VERBOSE("data stream", {
|
|
{ "to_send", str }
|
|
});
|
|
if (!sink.write(str.c_str(), str.size()))
|
|
{
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
sink.done();
|
|
return true;
|
|
};
|
|
|
|
auto on_complete = [task_id, &llama] (bool)
|
|
{
|
|
// cancel
|
|
llama.request_cancel(task_id);
|
|
};
|
|
|
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
|
}
|
|
});
|
|
|
|
|
|
|
|
svr.Get("/v1/models", [¶ms](const httplib::Request&, httplib::Response& res)
|
|
{
|
|
std::time_t t = std::time(0);
|
|
|
|
json models = {
|
|
{"object", "list"},
|
|
{"data", {
|
|
{
|
|
{"id", params.model_alias},
|
|
{"object", "model"},
|
|
{"created", t},
|
|
{"owned_by", "llamacpp"}
|
|
},
|
|
}}
|
|
};
|
|
|
|
res.set_content(models.dump(), "application/json; charset=utf-8");
|
|
});
|
|
|
|
// TODO: add mount point without "/v1" prefix -- how?
|
|
svr.Post("/v1/chat/completions", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
|
|
{
|
|
if (!validate_api_key(req, res)) {
|
|
return;
|
|
}
|
|
json data = oaicompat_completion_params_parse(json::parse(req.body));
|
|
|
|
const int task_id = llama.request_completion(data, false, false, -1);
|
|
|
|
if (!json_value(data, "stream", false)) {
|
|
std::string completion_text;
|
|
task_result result = llama.next_result(task_id);
|
|
|
|
if (!result.error && result.stop) {
|
|
json oaicompat_result = format_final_response_oaicompat(data, result);
|
|
|
|
res.set_content(oaicompat_result.dump(-1, ' ', false,
|
|
json::error_handler_t::replace),
|
|
"application/json; charset=utf-8");
|
|
} else {
|
|
res.status = 500;
|
|
res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
|
|
return;
|
|
}
|
|
} else {
|
|
const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink &sink) {
|
|
while (true) {
|
|
task_result llama_result = llama.next_result(task_id);
|
|
if (!llama_result.error) {
|
|
std::vector<json> result_array = format_partial_response_oaicompat( llama_result);
|
|
|
|
for (auto it = result_array.begin(); it != result_array.end(); ++it)
|
|
{
|
|
if (!it->empty()) {
|
|
const std::string str =
|
|
"data: " +
|
|
it->dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n";
|
|
LOG_VERBOSE("data stream", {{"to_send", str}});
|
|
if (!sink.write(str.c_str(), str.size())) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
if (llama_result.stop) {
|
|
break;
|
|
}
|
|
} else {
|
|
const std::string str =
|
|
"error: " +
|
|
llama_result.result_json.dump(-1, ' ', false,
|
|
json::error_handler_t::replace) +
|
|
"\n\n";
|
|
LOG_VERBOSE("data stream", {{"to_send", str}});
|
|
if (!sink.write(str.c_str(), str.size())) {
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
sink.done();
|
|
return true;
|
|
};
|
|
|
|
auto on_complete = [task_id, &llama](bool) {
|
|
// cancel request
|
|
llama.request_cancel(task_id);
|
|
};
|
|
|
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
|
}
|
|
});
|
|
|
|
svr.Post("/infill", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
|
|
{
|
|
if (!validate_api_key(req, res)) {
|
|
return;
|
|
}
|
|
json data = json::parse(req.body);
|
|
const int task_id = llama.request_completion(data, true, false, -1);
|
|
if (!json_value(data, "stream", false)) {
|
|
std::string completion_text;
|
|
task_result result = llama.next_result(task_id);
|
|
if (!result.error && result.stop)
|
|
{
|
|
res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
|
|
}
|
|
else
|
|
{
|
|
res.status = 404;
|
|
res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
|
|
return;
|
|
}
|
|
} else {
|
|
const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink) {
|
|
while (true)
|
|
{
|
|
task_result result = llama.next_result(task_id);
|
|
if (!result.error) {
|
|
const std::string str =
|
|
"data: " +
|
|
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n";
|
|
LOG_VERBOSE("data stream", {
|
|
{ "to_send", str }
|
|
});
|
|
if (!sink.write(str.c_str(), str.size()))
|
|
{
|
|
return false;
|
|
}
|
|
if (result.stop)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
sink.done();
|
|
|
|
return true;
|
|
};
|
|
|
|
auto on_complete = [task_id, &llama] (bool)
|
|
{
|
|
// cancel
|
|
llama.request_cancel(task_id);
|
|
};
|
|
|
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
|
}
|
|
});
|
|
|
|
svr.Get("/model.json", [&llama](const httplib::Request &, httplib::Response &res)
|
|
{
|
|
const json data = llama.get_model_props();
|
|
return res.set_content(data.dump(), "application/json; charset=utf-8");
|
|
});
|
|
|
|
svr.Options(R"(/.*)", [](const httplib::Request &, httplib::Response &res)
|
|
{ return res.set_content("", "application/json; charset=utf-8"); });
|
|
|
|
svr.Post("/tokenize", [&llama](const httplib::Request &req, httplib::Response &res)
|
|
{
|
|
const json body = json::parse(req.body);
|
|
std::vector<llama_token> tokens;
|
|
if (body.count("content") != 0)
|
|
{
|
|
tokens = llama.tokenize(body["content"], false);
|
|
}
|
|
const json data = format_tokenizer_response(tokens);
|
|
return res.set_content(data.dump(), "application/json; charset=utf-8");
|
|
});
|
|
|
|
svr.Post("/detokenize", [&llama](const httplib::Request &req, httplib::Response &res)
|
|
{
|
|
const json body = json::parse(req.body);
|
|
std::string content;
|
|
if (body.count("tokens") != 0)
|
|
{
|
|
const std::vector<llama_token> tokens = body["tokens"];
|
|
content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend());
|
|
}
|
|
|
|
const json data = format_detokenized_response(content);
|
|
return res.set_content(data.dump(), "application/json; charset=utf-8");
|
|
});
|
|
|
|
svr.Post("/embedding", [&llama](const httplib::Request &req, httplib::Response &res)
|
|
{
|
|
const json body = json::parse(req.body);
|
|
json prompt;
|
|
if (body.count("content") != 0)
|
|
{
|
|
prompt = body["content"];
|
|
}
|
|
else
|
|
{
|
|
prompt = "";
|
|
}
|
|
|
|
json image_data;
|
|
if (body.count("image_data") != 0) {
|
|
image_data = body["image_data"];
|
|
}
|
|
else
|
|
{
|
|
image_data = "";
|
|
}
|
|
|
|
const int task_id = llama.request_completion({ {"prompt", prompt}, { "n_predict", 0}, {"image_data", image_data} }, false, true, -1);
|
|
task_result result = llama.next_result(task_id);
|
|
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
|
|
});
|
|
|
|
svr.set_logger(log_server_request);
|
|
|
|
svr.set_exception_handler([](const httplib::Request &, httplib::Response &res, std::exception_ptr ep)
|
|
{
|
|
const char fmt[] = "500 Internal Server Error\n%s";
|
|
char buf[BUFSIZ];
|
|
try
|
|
{
|
|
std::rethrow_exception(std::move(ep));
|
|
}
|
|
catch (std::exception &e)
|
|
{
|
|
snprintf(buf, sizeof(buf), fmt, e.what());
|
|
}
|
|
catch (...)
|
|
{
|
|
snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
|
|
}
|
|
res.set_content(buf, "text/plain; charset=utf-8");
|
|
res.status = 500;
|
|
});
|
|
|
|
svr.set_error_handler([](const httplib::Request &, httplib::Response &res)
|
|
{
|
|
if (res.status == 401)
|
|
{
|
|
res.set_content("Unauthorized", "text/plain; charset=utf-8");
|
|
}
|
|
if (res.status == 400)
|
|
{
|
|
res.set_content("Invalid request", "text/plain; charset=utf-8");
|
|
}
|
|
else if (res.status == 404)
|
|
{
|
|
res.set_content("File Not Found", "text/plain; charset=utf-8");
|
|
res.status = 404;
|
|
}
|
|
});
|
|
|
|
// set timeouts and change hostname and port
|
|
svr.set_read_timeout (sparams.read_timeout);
|
|
svr.set_write_timeout(sparams.write_timeout);
|
|
|
|
if (!svr.bind_to_port(sparams.hostname, sparams.port))
|
|
{
|
|
fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
|
|
return 1;
|
|
}
|
|
|
|
// Set the base directory for serving static files
|
|
svr.set_base_dir(sparams.public_path);
|
|
|
|
// to make it ctrl+clickable:
|
|
LOG_TEE("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
|
|
|
|
std::unordered_map<std::string, std::string> log_data;
|
|
log_data["hostname"] = sparams.hostname;
|
|
log_data["port"] = std::to_string(sparams.port);
|
|
|
|
if (!sparams.api_key.empty()) {
|
|
log_data["api_key"] = "api_key: ****" + sparams.api_key.substr(sparams.api_key.length() - 4);
|
|
}
|
|
|
|
LOG_INFO("HTTP server listening", log_data);
|
|
// run the HTTP server in a thread - see comment below
|
|
std::thread t([&]()
|
|
{
|
|
if (!svr.listen_after_bind())
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
});
|
|
|
|
// GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?
|
|
// "Bus error: 10" - this is on macOS, it does not crash on Linux
|
|
//std::thread t2([&]()
|
|
{
|
|
bool running = true;
|
|
while (running)
|
|
{
|
|
running = llama.update_slots();
|
|
}
|
|
}
|
|
//);
|
|
|
|
t.join();
|
|
|
|
llama_backend_free();
|
|
return 0;
|
|
}
|