mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-10-30 22:50:15 +01:00
23b5e12eb5
This commit updates the error message that is printed when the KV cache is not big enough to hold all the prompt and generated tokens. Specifically it removes the reference to n_parallel and replaces it with n_len. Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
183 lines
4.9 KiB
C++
183 lines
4.9 KiB
C++
#include "common.h"
|
|
#include "llama.h"
|
|
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
int main(int argc, char ** argv) {
|
|
gpt_params params;
|
|
|
|
if (argc == 1 || argv[1][0] == '-') {
|
|
printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
|
|
return 1 ;
|
|
}
|
|
|
|
if (argc >= 2) {
|
|
params.model = argv[1];
|
|
}
|
|
|
|
if (argc >= 3) {
|
|
params.prompt = argv[2];
|
|
}
|
|
|
|
if (params.prompt.empty()) {
|
|
params.prompt = "Hello my name is";
|
|
}
|
|
|
|
// total length of the sequence including the prompt
|
|
const int n_len = 32;
|
|
|
|
// init LLM
|
|
|
|
llama_backend_init(params.numa);
|
|
|
|
// initialize the model
|
|
|
|
llama_model_params model_params = llama_model_default_params();
|
|
|
|
// model_params.n_gpu_layers = 99; // offload all layers to the GPU
|
|
|
|
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
|
|
|
if (model == NULL) {
|
|
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
|
return 1;
|
|
}
|
|
|
|
// initialize the context
|
|
|
|
llama_context_params ctx_params = llama_context_default_params();
|
|
|
|
ctx_params.seed = 1234;
|
|
ctx_params.n_ctx = 2048;
|
|
ctx_params.n_threads = params.n_threads;
|
|
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
|
|
|
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
|
|
|
if (ctx == NULL) {
|
|
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
|
return 1;
|
|
}
|
|
|
|
// tokenize the prompt
|
|
|
|
std::vector<llama_token> tokens_list;
|
|
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
|
|
|
|
const int n_ctx = llama_n_ctx(ctx);
|
|
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
|
|
|
|
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_kv_req);
|
|
|
|
// make sure the KV cache is big enough to hold all the prompt and generated tokens
|
|
if (n_kv_req > n_ctx) {
|
|
LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
|
|
LOG_TEE("%s: either reduce n_len or increase n_ctx\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
// print the prompt token-by-token
|
|
|
|
fprintf(stderr, "\n");
|
|
|
|
for (auto id : tokens_list) {
|
|
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
|
|
}
|
|
|
|
fflush(stderr);
|
|
|
|
// create a llama_batch with size 512
|
|
// we use this object to submit token data for decoding
|
|
|
|
llama_batch batch = llama_batch_init(512, 0, 1);
|
|
|
|
// evaluate the initial prompt
|
|
for (size_t i = 0; i < tokens_list.size(); i++) {
|
|
llama_batch_add(batch, tokens_list[i], i, { 0 }, false);
|
|
}
|
|
|
|
// llama_decode will output logits only for the last token of the prompt
|
|
batch.logits[batch.n_tokens - 1] = true;
|
|
|
|
if (llama_decode(ctx, batch) != 0) {
|
|
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
// main loop
|
|
|
|
int n_cur = batch.n_tokens;
|
|
int n_decode = 0;
|
|
|
|
const auto t_main_start = ggml_time_us();
|
|
|
|
while (n_cur <= n_len) {
|
|
// sample the next token
|
|
{
|
|
auto n_vocab = llama_n_vocab(model);
|
|
auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
|
|
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve(n_vocab);
|
|
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
|
|
}
|
|
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
|
|
// sample the most likely token
|
|
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
|
|
|
|
// is it an end of stream?
|
|
if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
|
|
LOG_TEE("\n");
|
|
|
|
break;
|
|
}
|
|
|
|
LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
|
|
fflush(stdout);
|
|
|
|
// prepare the next batch
|
|
llama_batch_clear(batch);
|
|
|
|
// push this new token for next evaluation
|
|
llama_batch_add(batch, new_token_id, n_cur, { 0 }, true);
|
|
|
|
n_decode += 1;
|
|
}
|
|
|
|
n_cur += 1;
|
|
|
|
// evaluate the current batch with the transformer model
|
|
if (llama_decode(ctx, batch)) {
|
|
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
LOG_TEE("\n");
|
|
|
|
const auto t_main_end = ggml_time_us();
|
|
|
|
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
|
|
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
|
|
|
|
llama_print_timings(ctx);
|
|
|
|
fprintf(stderr, "\n");
|
|
|
|
llama_batch_free(batch);
|
|
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
|
|
llama_backend_free();
|
|
|
|
return 0;
|
|
}
|