mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-01 00:39:00 +01:00
5dc9dd7152
* Add Command R Plus GGUF * Add Command R Plus GGUF * Loading works up to LayerNorm2D * Export new tensors in 1D so they are not quantized. * Fix embedding layer based on Noeda's example * Whitespace * Add line * Fix unexpected tokens on MPS. Re-add F16 fix. ((Noeda) * dranger003: Fix block index overflow in CUDA dequantizing. * Reverted blocked multiplication code as it still has issues and could affect other Llama arches * export norms as f32 * fix overflow issues during quant and other cleanup * Type convention Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * dranger003: Fix more int overflow during quant. --------- Co-authored-by: S <seast@Ss-Mac-Studio.local> Co-authored-by: S <s@example.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2668 lines
101 KiB
Plaintext
2668 lines
101 KiB
Plaintext
#include "ggml-cuda.h"
|
|
#include "ggml.h"
|
|
#include "ggml-backend-impl.h"
|
|
|
|
#include "ggml-cuda/common.cuh"
|
|
#include "ggml-cuda/acc.cuh"
|
|
#include "ggml-cuda/alibi.cuh"
|
|
#include "ggml-cuda/arange.cuh"
|
|
#include "ggml-cuda/argsort.cuh"
|
|
#include "ggml-cuda/binbcast.cuh"
|
|
#include "ggml-cuda/clamp.cuh"
|
|
#include "ggml-cuda/concat.cuh"
|
|
#include "ggml-cuda/convert.cuh"
|
|
#include "ggml-cuda/cpy.cuh"
|
|
#include "ggml-cuda/diagmask.cuh"
|
|
#include "ggml-cuda/dmmv.cuh"
|
|
#include "ggml-cuda/getrows.cuh"
|
|
#include "ggml-cuda/im2col.cuh"
|
|
#include "ggml-cuda/mmq.cuh"
|
|
#include "ggml-cuda/mmvq.cuh"
|
|
#include "ggml-cuda/norm.cuh"
|
|
#include "ggml-cuda/pad.cuh"
|
|
#include "ggml-cuda/pool2d.cuh"
|
|
#include "ggml-cuda/quantize.cuh"
|
|
#include "ggml-cuda/rope.cuh"
|
|
#include "ggml-cuda/scale.cuh"
|
|
#include "ggml-cuda/softmax.cuh"
|
|
#include "ggml-cuda/sumrows.cuh"
|
|
#include "ggml-cuda/tsembd.cuh"
|
|
#include "ggml-cuda/unary.cuh"
|
|
#include "ggml-cuda/upscale.cuh"
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <atomic>
|
|
#include <cinttypes>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <float.h>
|
|
#include <limits>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <mutex>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
|
|
|
|
[[noreturn]]
|
|
void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) {
|
|
int id = -1; // in case cudaGetDevice fails
|
|
cudaGetDevice(&id);
|
|
|
|
fprintf(stderr, "CUDA error: %s\n", msg);
|
|
fprintf(stderr, " current device: %d, in function %s at %s:%d\n", id, func, file, line);
|
|
fprintf(stderr, " %s\n", stmt);
|
|
// abort with GGML_ASSERT to get a stack trace
|
|
GGML_ASSERT(!"CUDA error");
|
|
}
|
|
|
|
// this is faster on Windows
|
|
// probably because the Windows CUDA libraries forget to make this check before invoking the drivers
|
|
void ggml_cuda_set_device(int device) {
|
|
int current_device;
|
|
CUDA_CHECK(cudaGetDevice(¤t_device));
|
|
|
|
if (device == current_device) {
|
|
return;
|
|
}
|
|
|
|
CUDA_CHECK(cudaSetDevice(device));
|
|
}
|
|
|
|
int ggml_cuda_get_device() {
|
|
int id;
|
|
CUDA_CHECK(cudaGetDevice(&id));
|
|
return id;
|
|
}
|
|
|
|
static ggml_cuda_device_info ggml_cuda_init() {
|
|
#ifdef __HIP_PLATFORM_AMD__
|
|
// Workaround for a rocBLAS bug when using multiple graphics cards:
|
|
// https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
|
|
rocblas_initialize();
|
|
CUDA_CHECK(cudaDeviceSynchronize());
|
|
#endif
|
|
|
|
ggml_cuda_device_info info = {};
|
|
|
|
cudaError_t err = cudaGetDeviceCount(&info.device_count);
|
|
if (err != cudaSuccess) {
|
|
fprintf(stderr, "%s: failed to initialize " GGML_CUDA_NAME ": %s\n", __func__, cudaGetErrorString(err));
|
|
return info;
|
|
}
|
|
|
|
GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES);
|
|
|
|
int64_t total_vram = 0;
|
|
#if defined(GGML_CUDA_FORCE_MMQ)
|
|
fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: yes\n", __func__);
|
|
#else
|
|
fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: no\n", __func__);
|
|
#endif
|
|
#if defined(CUDA_USE_TENSOR_CORES)
|
|
fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: yes\n", __func__);
|
|
#else
|
|
fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: no\n", __func__);
|
|
#endif
|
|
fprintf(stderr, "%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count);
|
|
for (int id = 0; id < info.device_count; ++id) {
|
|
int device_vmm = 0;
|
|
|
|
#if !defined(GGML_USE_HIPBLAS)
|
|
CUdevice device;
|
|
CU_CHECK(cuDeviceGet(&device, id));
|
|
CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
|
|
|
|
if (device_vmm) {
|
|
CUmemAllocationProp alloc_prop = {};
|
|
alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
|
|
alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
|
|
alloc_prop.location.id = id;
|
|
CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
|
|
}
|
|
#endif // !defined(GGML_USE_HIPBLAS)
|
|
info.devices[id].vmm = !!device_vmm;
|
|
|
|
cudaDeviceProp prop;
|
|
CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
|
|
fprintf(stderr, " Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
|
|
|
|
info.default_tensor_split[id] = total_vram;
|
|
total_vram += prop.totalGlobalMem;
|
|
|
|
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
|
info.devices[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
|
|
#else
|
|
info.devices[id].cc = 100*prop.major + 10*prop.minor;
|
|
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
|
info.devices[id].smpb = prop.sharedMemPerBlock;
|
|
}
|
|
|
|
for (int id = 0; id < info.device_count; ++id) {
|
|
info.default_tensor_split[id] /= total_vram;
|
|
}
|
|
|
|
// configure logging to stdout
|
|
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
|
|
|
|
return info;
|
|
}
|
|
|
|
const ggml_cuda_device_info & ggml_cuda_info() {
|
|
static ggml_cuda_device_info info = ggml_cuda_init();
|
|
return info;
|
|
}
|
|
|
|
// #define DEBUG_CUDA_MALLOC
|
|
|
|
// buffer pool for cuda (legacy)
|
|
struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
|
static const int MAX_BUFFERS = 256;
|
|
|
|
int device;
|
|
struct ggml_cuda_buffer {
|
|
void * ptr = nullptr;
|
|
size_t size = 0;
|
|
};
|
|
|
|
ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {};
|
|
size_t pool_size = 0;
|
|
|
|
explicit ggml_cuda_pool_leg(int device) :
|
|
device(device) {
|
|
}
|
|
|
|
~ggml_cuda_pool_leg() {
|
|
ggml_cuda_set_device(device);
|
|
for (int i = 0; i < MAX_BUFFERS; ++i) {
|
|
ggml_cuda_buffer & b = buffer_pool[i];
|
|
if (b.ptr != nullptr) {
|
|
CUDA_CHECK(cudaFree(b.ptr));
|
|
pool_size -= b.size;
|
|
}
|
|
}
|
|
GGML_ASSERT(pool_size == 0);
|
|
}
|
|
|
|
void * alloc(size_t size, size_t * actual_size) override {
|
|
#ifdef DEBUG_CUDA_MALLOC
|
|
int nnz = 0;
|
|
size_t max_size = 0;
|
|
#endif
|
|
size_t best_diff = 1ull << 36;
|
|
int ibest = -1;
|
|
for (int i = 0; i < MAX_BUFFERS; ++i) {
|
|
ggml_cuda_buffer& b = buffer_pool[i];
|
|
if (b.ptr != nullptr) {
|
|
#ifdef DEBUG_CUDA_MALLOC
|
|
++nnz;
|
|
if (b.size > max_size) max_size = b.size;
|
|
#endif
|
|
if (b.size >= size) {
|
|
size_t diff = b.size - size;
|
|
if (diff < best_diff) {
|
|
best_diff = diff;
|
|
ibest = i;
|
|
if (!best_diff) {
|
|
void * ptr = b.ptr;
|
|
*actual_size = b.size;
|
|
b.ptr = nullptr;
|
|
b.size = 0;
|
|
return ptr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (ibest >= 0) {
|
|
ggml_cuda_buffer& b = buffer_pool[ibest];
|
|
void * ptr = b.ptr;
|
|
*actual_size = b.size;
|
|
b.ptr = nullptr;
|
|
b.size = 0;
|
|
return ptr;
|
|
}
|
|
void * ptr;
|
|
size_t look_ahead_size = (size_t) (1.05 * size);
|
|
look_ahead_size = 256 * ((look_ahead_size + 255)/256);
|
|
ggml_cuda_set_device(device);
|
|
CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size));
|
|
*actual_size = look_ahead_size;
|
|
pool_size += look_ahead_size;
|
|
#ifdef DEBUG_CUDA_MALLOC
|
|
fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz,
|
|
(uint32_t)(max_size/1024/1024), (uint32_t)(pool_size/1024/1024), (uint32_t)(size/1024/1024));
|
|
#endif
|
|
return ptr;
|
|
}
|
|
|
|
void free(void * ptr, size_t size) override {
|
|
for (int i = 0; i < MAX_BUFFERS; ++i) {
|
|
ggml_cuda_buffer& b = buffer_pool[i];
|
|
if (b.ptr == nullptr) {
|
|
b.ptr = ptr;
|
|
b.size = size;
|
|
return;
|
|
}
|
|
}
|
|
fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
|
|
ggml_cuda_set_device(device);
|
|
CUDA_CHECK(cudaFree(ptr));
|
|
pool_size -= size;
|
|
}
|
|
};
|
|
|
|
// pool with virtual memory
|
|
#if !defined(GGML_USE_HIPBLAS)
|
|
struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
|
static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
|
|
|
|
int device;
|
|
CUdeviceptr pool_addr = 0;
|
|
size_t pool_used = 0;
|
|
size_t pool_size = 0;
|
|
size_t granularity;
|
|
|
|
explicit ggml_cuda_pool_vmm(int device) :
|
|
device(device),
|
|
granularity(ggml_cuda_info().devices[device].vmm_granularity) {
|
|
}
|
|
|
|
~ggml_cuda_pool_vmm() {
|
|
if (pool_addr != 0) {
|
|
CU_CHECK(cuMemUnmap(pool_addr, pool_size));
|
|
CU_CHECK(cuMemAddressFree(pool_addr, CUDA_POOL_VMM_MAX_SIZE));
|
|
}
|
|
}
|
|
|
|
void * alloc(size_t size, size_t * actual_size) override {
|
|
// round up the allocation size to the alignment to ensure that all allocations are aligned for all data types
|
|
const size_t alignment = 128;
|
|
size = alignment * ((size + alignment - 1) / alignment);
|
|
|
|
size_t avail = pool_size - pool_used;
|
|
|
|
if (size > avail) {
|
|
// round up to the next multiple of the granularity
|
|
size_t reserve_size = size - avail;
|
|
reserve_size = granularity * ((reserve_size + granularity - 1) / granularity);
|
|
|
|
GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);
|
|
|
|
// allocate more physical memory
|
|
CUmemAllocationProp prop = {};
|
|
prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
|
|
prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
|
|
prop.location.id = device;
|
|
CUmemGenericAllocationHandle handle;
|
|
CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0));
|
|
|
|
// reserve virtual address space (if not already reserved)
|
|
if (pool_addr == 0) {
|
|
CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
|
|
}
|
|
|
|
// map at the end of the pool
|
|
CU_CHECK(cuMemMap(pool_addr + pool_size, reserve_size, 0, handle, 0));
|
|
|
|
// the memory allocation handle is no longer needed after mapping
|
|
CU_CHECK(cuMemRelease(handle));
|
|
|
|
// set access
|
|
CUmemAccessDesc access = {};
|
|
access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
|
|
access.location.id = device;
|
|
access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
|
|
CU_CHECK(cuMemSetAccess(pool_addr + pool_size, reserve_size, &access, 1));
|
|
|
|
// add to the pool
|
|
pool_size += reserve_size;
|
|
|
|
//printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n",
|
|
// device, (unsigned long long) (pool_size/1024/1024),
|
|
// (unsigned long long) (reserve_size/1024/1024));
|
|
}
|
|
|
|
GGML_ASSERT(pool_addr != 0);
|
|
|
|
void * ptr = (void *) (pool_addr + pool_used);
|
|
*actual_size = size;
|
|
pool_used += size;
|
|
|
|
#ifdef DEBUG_CUDA_MALLOC
|
|
printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
|
|
#endif
|
|
|
|
return ptr;
|
|
}
|
|
|
|
void free(void * ptr, size_t size) override {
|
|
#ifdef DEBUG_CUDA_MALLOC
|
|
printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
|
|
#endif
|
|
|
|
pool_used -= size;
|
|
|
|
// all deallocations must be in reverse order of the allocations
|
|
GGML_ASSERT(ptr == (void *) (pool_addr + pool_used));
|
|
}
|
|
};
|
|
#endif // !defined(GGML_USE_HIPBLAS)
|
|
|
|
std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
|
|
#if !defined(GGML_USE_HIPBLAS)
|
|
if (ggml_cuda_info().devices[device].vmm) {
|
|
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
|
|
}
|
|
#endif
|
|
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
|
|
}
|
|
|
|
// cuda buffer
|
|
|
|
struct ggml_backend_cuda_buffer_context {
|
|
int device;
|
|
void * dev_ptr = nullptr;
|
|
std::string name;
|
|
|
|
ggml_backend_cuda_buffer_context(int device, void * dev_ptr) :
|
|
device(device), dev_ptr(dev_ptr),
|
|
name(GGML_CUDA_NAME + std::to_string(device)) {
|
|
}
|
|
|
|
~ggml_backend_cuda_buffer_context() {
|
|
CUDA_CHECK(cudaFree(dev_ptr));
|
|
}
|
|
};
|
|
|
|
GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
|
|
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
|
return ctx->name.c_str();
|
|
}
|
|
|
|
GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
|
|
return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name;
|
|
}
|
|
|
|
GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
|
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
|
delete ctx;
|
|
}
|
|
|
|
GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
|
|
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
|
return ctx->dev_ptr;
|
|
}
|
|
|
|
GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
|
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
|
|
|
if (tensor->view_src != NULL) {
|
|
assert(tensor->view_src->buffer->buft == buffer->buft);
|
|
return;
|
|
}
|
|
|
|
if (ggml_is_quantized(tensor->type)) {
|
|
// initialize padding to 0 to avoid possible NaN values
|
|
size_t original_size = ggml_nbytes(tensor);
|
|
size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
|
|
|
|
if (padded_size > original_size && tensor->view_src == nullptr) {
|
|
ggml_cuda_set_device(ctx->device);
|
|
CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
|
|
}
|
|
}
|
|
}
|
|
|
|
GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
|
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
|
|
|
ggml_cuda_set_device(ctx->device);
|
|
CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread));
|
|
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
|
|
}
|
|
|
|
GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
|
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
|
|
|
ggml_cuda_set_device(ctx->device);
|
|
CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
|
|
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
|
|
}
|
|
|
|
GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
|
|
if (ggml_backend_buffer_is_cuda(src->buffer)) {
|
|
ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
|
|
ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context;
|
|
if (src_ctx->device == dst_ctx->device) {
|
|
CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice, cudaStreamPerThread));
|
|
} else {
|
|
#ifdef GGML_CUDA_NO_PEER_COPY
|
|
return false;
|
|
#else
|
|
CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, dst_ctx->device, src->data, src_ctx->device, ggml_nbytes(src), cudaStreamPerThread));
|
|
#endif
|
|
}
|
|
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
|
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
|
|
|
ggml_cuda_set_device(ctx->device);
|
|
CUDA_CHECK(cudaDeviceSynchronize());
|
|
CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
|
|
CUDA_CHECK(cudaDeviceSynchronize());
|
|
}
|
|
|
|
static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
|
|
/* .get_name = */ ggml_backend_cuda_buffer_get_name,
|
|
/* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer,
|
|
/* .get_base = */ ggml_backend_cuda_buffer_get_base,
|
|
/* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor,
|
|
/* .set_tensor = */ ggml_backend_cuda_buffer_set_tensor,
|
|
/* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor,
|
|
/* .cpy_tensor = */ ggml_backend_cuda_buffer_cpy_tensor,
|
|
/* .clear = */ ggml_backend_cuda_buffer_clear,
|
|
/* .reset = */ NULL,
|
|
};
|
|
|
|
// cuda buffer type
|
|
struct ggml_backend_cuda_buffer_type_context {
|
|
int device;
|
|
std::string name;
|
|
};
|
|
|
|
GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
|
ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
|
|
|
|
return ctx->name.c_str();
|
|
}
|
|
|
|
GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
|
ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
|
|
|
|
ggml_cuda_set_device(buft_ctx->device);
|
|
|
|
size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
|
|
|
|
void * dev_ptr;
|
|
cudaError_t err = cudaMalloc(&dev_ptr, size);
|
|
if (err != cudaSuccess) {
|
|
fprintf(stderr, "%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size/1024.0/1024.0, buft_ctx->device, cudaGetErrorString(err));
|
|
return nullptr;
|
|
}
|
|
|
|
ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr);
|
|
|
|
return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size);
|
|
}
|
|
|
|
GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
|
return 128;
|
|
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
|
size_t size = ggml_nbytes(tensor);
|
|
int64_t ne0 = tensor->ne[0];
|
|
|
|
if (ggml_is_quantized(tensor->type)) {
|
|
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
|
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
|
|
}
|
|
}
|
|
|
|
return size;
|
|
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
GGML_CALL static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
|
if (!ggml_backend_is_cuda(backend)) {
|
|
return false;
|
|
}
|
|
|
|
ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
|
|
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
|
|
|
return buft_ctx->device == cuda_ctx->device;
|
|
}
|
|
|
|
static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
|
|
/* .get_name = */ ggml_backend_cuda_buffer_type_name,
|
|
/* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
|
|
/* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
|
|
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
|
/* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
|
|
/* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend,
|
|
/* .is_host = */ NULL,
|
|
};
|
|
|
|
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
|
|
static std::mutex mutex;
|
|
std::lock_guard<std::mutex> lock(mutex);
|
|
|
|
if (device >= ggml_backend_cuda_get_device_count()) {
|
|
return nullptr;
|
|
}
|
|
|
|
static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];
|
|
|
|
static bool ggml_backend_cuda_buffer_type_initialized = false;
|
|
|
|
if (!ggml_backend_cuda_buffer_type_initialized) {
|
|
for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
|
|
ggml_backend_cuda_buffer_types[i] = {
|
|
/* .iface = */ ggml_backend_cuda_buffer_type_interface,
|
|
/* .context = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)},
|
|
};
|
|
}
|
|
ggml_backend_cuda_buffer_type_initialized = true;
|
|
}
|
|
|
|
return &ggml_backend_cuda_buffer_types[device];
|
|
}
|
|
|
|
// cuda split buffer
|
|
|
|
static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) {
|
|
int64_t min_compute_capability = INT_MAX;
|
|
int64_t max_compute_capability = INT_MIN;
|
|
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
|
|
if (tensor_split[id] < (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
|
|
if (min_compute_capability > ggml_cuda_info().devices[id].cc) {
|
|
min_compute_capability = ggml_cuda_info().devices[id].cc;
|
|
}
|
|
if (max_compute_capability < ggml_cuda_info().devices[id].cc) {
|
|
max_compute_capability = ggml_cuda_info().devices[id].cc;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
|
switch(type) {
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
return max_compute_capability >= CC_RDNA2 ? 128 : 64;
|
|
case GGML_TYPE_F16:
|
|
case GGML_TYPE_F32:
|
|
return 1;
|
|
case GGML_TYPE_Q2_K:
|
|
return max_compute_capability >= CC_RDNA2 ? 128 : 32;
|
|
case GGML_TYPE_Q3_K:
|
|
return min_compute_capability < CC_RDNA2 ? 128 : 64;
|
|
case GGML_TYPE_Q4_K:
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
case GGML_TYPE_IQ2_XXS:
|
|
case GGML_TYPE_IQ2_XS:
|
|
case GGML_TYPE_IQ2_S:
|
|
case GGML_TYPE_IQ3_XXS:
|
|
case GGML_TYPE_IQ1_S:
|
|
case GGML_TYPE_IQ1_M:
|
|
case GGML_TYPE_IQ4_NL:
|
|
case GGML_TYPE_IQ4_XS:
|
|
case GGML_TYPE_IQ3_S:
|
|
return max_compute_capability >= CC_RDNA2 ? 128 : 64;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
}
|
|
#else
|
|
switch(type) {
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
return max_compute_capability >= CC_VOLTA ? 128 : 64;
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
return 64;
|
|
case GGML_TYPE_F16:
|
|
case GGML_TYPE_F32:
|
|
return 1;
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
case GGML_TYPE_Q4_K:
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_IQ2_XXS:
|
|
case GGML_TYPE_IQ2_XS:
|
|
case GGML_TYPE_IQ2_S:
|
|
case GGML_TYPE_IQ3_XXS:
|
|
case GGML_TYPE_IQ1_S:
|
|
case GGML_TYPE_IQ1_M:
|
|
case GGML_TYPE_IQ4_NL:
|
|
case GGML_TYPE_IQ4_XS:
|
|
case GGML_TYPE_IQ3_S:
|
|
return max_compute_capability >= CC_VOLTA ? 128 : 64;
|
|
case GGML_TYPE_Q6_K:
|
|
return 64;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
}
|
|
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
|
}
|
|
|
|
static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) {
|
|
const int64_t nrows = ggml_nrows(tensor);
|
|
const int64_t rounding = get_row_rounding(tensor->type, tensor_split);
|
|
|
|
*row_low = id == 0 ? 0 : nrows*tensor_split[id];
|
|
*row_low -= *row_low % rounding;
|
|
|
|
if (id == ggml_backend_cuda_get_device_count() - 1) {
|
|
*row_high = nrows;
|
|
} else {
|
|
*row_high = nrows*tensor_split[id + 1];
|
|
*row_high -= *row_high % rounding;
|
|
}
|
|
}
|
|
|
|
static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
|
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
|
|
|
return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
|
|
}
|
|
|
|
struct ggml_backend_cuda_split_buffer_type_context {
|
|
std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
|
|
};
|
|
|
|
struct ggml_backend_cuda_split_buffer_context {
|
|
~ggml_backend_cuda_split_buffer_context() {
|
|
for (ggml_tensor_extra_gpu * extra : tensor_extras) {
|
|
for (int id = 0; id < GGML_CUDA_MAX_DEVICES; ++id) {
|
|
for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
|
|
if (extra->events[id][is] != nullptr) {
|
|
CUDA_CHECK(cudaEventDestroy(extra->events[id][is]));
|
|
}
|
|
}
|
|
if (extra->data_device[id] != nullptr) {
|
|
CUDA_CHECK(cudaFree(extra->data_device[id]));
|
|
}
|
|
}
|
|
delete extra;
|
|
}
|
|
}
|
|
|
|
std::vector<ggml_tensor_extra_gpu *> tensor_extras;
|
|
};
|
|
|
|
GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
|
|
return GGML_CUDA_NAME "_Split";
|
|
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) {
|
|
return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name;
|
|
GGML_UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds
|
|
}
|
|
|
|
GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
|
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
|
|
delete ctx;
|
|
}
|
|
|
|
GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
|
|
// the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
|
|
return (void *)0x1000;
|
|
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
|
GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
|
|
|
|
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
|
|
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
|
|
|
|
const int64_t ne0 = tensor->ne[0];
|
|
|
|
ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
|
|
ctx->tensor_extras.push_back(extra);
|
|
|
|
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
|
|
int64_t row_low, row_high;
|
|
get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
|
|
|
|
int64_t nrows_split = row_high - row_low;
|
|
if (nrows_split == 0) {
|
|
continue;
|
|
}
|
|
|
|
size_t size = ggml_nbytes_split(tensor, nrows_split);
|
|
const size_t original_size = size;
|
|
|
|
// pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
|
|
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
|
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
|
|
}
|
|
|
|
// FIXME: do not crash if cudaMalloc fails
|
|
// currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
|
|
ggml_cuda_set_device(id);
|
|
char * buf;
|
|
CUDA_CHECK(cudaMalloc(&buf, size));
|
|
|
|
// set padding to 0 to avoid possible NaN values
|
|
if (size > original_size) {
|
|
CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
|
|
}
|
|
|
|
extra->data_device[id] = buf;
|
|
|
|
for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
|
|
CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
|
|
}
|
|
}
|
|
tensor->extra = extra;
|
|
}
|
|
|
|
GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
|
// split tensors must always be set in their entirety at once
|
|
GGML_ASSERT(offset == 0);
|
|
GGML_ASSERT(size == ggml_nbytes(tensor));
|
|
|
|
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
|
|
|
|
const int64_t ne0 = tensor->ne[0];
|
|
const size_t nb1 = tensor->nb[1];
|
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
|
|
|
|
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
|
|
int64_t row_low, row_high;
|
|
get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
|
|
|
|
int64_t nrows_split = row_high - row_low;
|
|
if (nrows_split == 0) {
|
|
continue;
|
|
}
|
|
|
|
const size_t offset_split = row_low*nb1;
|
|
size_t size = ggml_nbytes_split(tensor, nrows_split);
|
|
const size_t original_size = size;
|
|
|
|
// pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
|
|
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
|
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
|
|
}
|
|
|
|
const char * buf_host = (const char *)data + offset_split;
|
|
CUDA_CHECK(cudaMemcpyAsync(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice, cudaStreamPerThread));
|
|
}
|
|
|
|
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
|
|
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
|
|
}
|
|
}
|
|
|
|
GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
|
// split tensors must always be set in their entirety at once
|
|
GGML_ASSERT(offset == 0);
|
|
GGML_ASSERT(size == ggml_nbytes(tensor));
|
|
|
|
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
|
|
|
|
const int64_t ne0 = tensor->ne[0];
|
|
const size_t nb1 = tensor->nb[1];
|
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
|
|
|
|
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
|
|
int64_t row_low, row_high;
|
|
get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
|
|
|
|
int64_t nrows_split = row_high - row_low;
|
|
if (nrows_split == 0) {
|
|
continue;
|
|
}
|
|
|
|
const size_t offset_split = row_low*nb1;
|
|
size_t size = ggml_nbytes_split(tensor, nrows_split);
|
|
const size_t original_size = size;
|
|
|
|
// pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
|
|
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
|
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
|
|
}
|
|
|
|
char * buf_host = (char *)data + offset_split;
|
|
CUDA_CHECK(cudaMemcpyAsync(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
|
|
}
|
|
|
|
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
|
|
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
|
|
}
|
|
}
|
|
|
|
GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
|
GGML_UNUSED(buffer);
|
|
GGML_UNUSED(value);
|
|
}
|
|
|
|
static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
|
|
/* .get_name = */ ggml_backend_cuda_split_buffer_get_name,
|
|
/* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer,
|
|
/* .get_base = */ ggml_backend_cuda_split_buffer_get_base,
|
|
/* .init_tensor = */ ggml_backend_cuda_split_buffer_init_tensor,
|
|
/* .set_tensor = */ ggml_backend_cuda_split_buffer_set_tensor,
|
|
/* .get_tensor = */ ggml_backend_cuda_split_buffer_get_tensor,
|
|
/* .cpy_tensor = */ NULL,
|
|
/* .clear = */ ggml_backend_cuda_split_buffer_clear,
|
|
/* .reset = */ NULL,
|
|
};
|
|
|
|
// cuda split buffer type
|
|
|
|
GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
|
return GGML_CUDA_NAME "_Split";
|
|
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
|
// since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
|
|
// instead, we allocate them for each tensor separately in init_tensor
|
|
// however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
|
|
// as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
|
|
ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context();
|
|
|
|
return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size);
|
|
}
|
|
|
|
GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
|
return 128;
|
|
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
|
ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
|
|
|
|
size_t total_size = 0;
|
|
|
|
const int64_t ne0 = tensor->ne[0];
|
|
|
|
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
|
|
int64_t row_low, row_high;
|
|
get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id);
|
|
|
|
int64_t nrows_split = row_high - row_low;
|
|
if (nrows_split == 0) {
|
|
continue;
|
|
}
|
|
|
|
total_size += ggml_nbytes_split(tensor, nrows_split);
|
|
|
|
// pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
|
|
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
|
total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
|
|
}
|
|
}
|
|
|
|
return total_size;
|
|
}
|
|
|
|
GGML_CALL static bool ggml_backend_cuda_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
|
return ggml_backend_is_cuda(backend);
|
|
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
|
return false;
|
|
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
|
|
/* .get_name = */ ggml_backend_cuda_split_buffer_type_name,
|
|
/* .alloc_buffer = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
|
|
/* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment,
|
|
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
|
/* .get_alloc_size = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
|
|
/* .supports_backend = */ ggml_backend_cuda_split_buffer_type_supports_backend,
|
|
/* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
|
|
};
|
|
|
|
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
|
|
static std::mutex mutex;
|
|
std::lock_guard<std::mutex> lock(mutex);
|
|
|
|
static std::map<std::array<float, GGML_CUDA_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
|
|
|
|
std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split_arr = {};
|
|
|
|
bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; });
|
|
if (all_zero) {
|
|
tensor_split_arr = ggml_cuda_info().default_tensor_split;
|
|
} else {
|
|
float split_sum = 0.0f;
|
|
for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
|
|
tensor_split_arr[i] = split_sum;
|
|
split_sum += tensor_split[i];
|
|
}
|
|
for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
|
|
tensor_split_arr[i] /= split_sum;
|
|
}
|
|
}
|
|
|
|
auto it = buft_map.find(tensor_split_arr);
|
|
if (it != buft_map.end()) {
|
|
return &it->second;
|
|
}
|
|
|
|
struct ggml_backend_buffer_type buft {
|
|
/* .iface = */ ggml_backend_cuda_split_buffer_type_interface,
|
|
/* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr},
|
|
};
|
|
|
|
auto result = buft_map.emplace(tensor_split_arr, buft);
|
|
return &result.first->second;
|
|
}
|
|
|
|
// host buffer type
|
|
|
|
GGML_CALL static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
|
return GGML_CUDA_NAME "_Host";
|
|
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
GGML_CALL static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) {
|
|
return GGML_CUDA_NAME "_Host";
|
|
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
GGML_CALL static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
|
CUDA_CHECK(cudaFreeHost(buffer->context));
|
|
}
|
|
|
|
static void * ggml_cuda_host_malloc(size_t size) {
|
|
if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
void * ptr = nullptr;
|
|
cudaError_t err = cudaMallocHost((void **) &ptr, size);
|
|
if (err != cudaSuccess) {
|
|
// clear the error
|
|
cudaGetLastError();
|
|
fprintf(stderr, "%s: warning: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
|
|
size/1024.0/1024.0, cudaGetErrorString(err));
|
|
return nullptr;
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
|
void * ptr = ggml_cuda_host_malloc(size);
|
|
|
|
if (ptr == nullptr) {
|
|
// fallback to cpu buffer
|
|
return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
|
|
}
|
|
|
|
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
|
|
buffer->buft = buft;
|
|
buffer->iface.get_name = ggml_backend_cuda_host_buffer_name;
|
|
buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;
|
|
|
|
return buffer;
|
|
}
|
|
|
|
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
|
|
static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
|
|
/* .iface = */ {
|
|
/* .get_name = */ ggml_backend_cuda_host_buffer_type_name,
|
|
/* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
|
|
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
|
|
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
|
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
|
|
/* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
|
|
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
|
|
},
|
|
/* .context = */ nullptr,
|
|
};
|
|
|
|
return &ggml_backend_cuda_buffer_type_host;
|
|
}
|
|
|
|
//static bool ggml_backend_buffer_is_cuda_host(ggml_backend_buffer_t buffer) {
|
|
// return buffer->buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
|
|
//}
|
|
|
|
/// kernels
|
|
|
|
typedef void (*ggml_cuda_op_mul_mat_t)(
|
|
ggml_backend_cuda_context & ctx,
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
|
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
|
const int64_t src1_padded_row_size, cudaStream_t stream);
|
|
|
|
#ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE
|
|
#define GGML_CUDA_PEER_MAX_BATCH_SIZE 128
|
|
#endif // GGML_CUDA_PEER_MAX_BATCH_SIZE
|
|
|
|
#define MUL_MAT_SRC1_COL_STRIDE 128
|
|
|
|
static __global__ void mul_mat_p021_f16_f32(
|
|
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
|
|
const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
|
|
|
|
const half * x = (const half *) vx;
|
|
|
|
const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
|
|
const int channel = blockDim.z*blockIdx.z + threadIdx.z;
|
|
const int channel_x = channel / (nchannels_y / nchannels_x);
|
|
|
|
const int nrows_y = ncols_x;
|
|
const int nrows_dst = nrows_x;
|
|
const int row_dst = row_x;
|
|
|
|
float tmp = 0.0f;
|
|
|
|
for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
|
|
const int col_x = col_x0 + threadIdx.x;
|
|
|
|
if (col_x >= ncols_x) {
|
|
break;
|
|
}
|
|
|
|
// x is transposed and permuted
|
|
const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
|
|
const float xi = __half2float(x[ix]);
|
|
|
|
const int row_y = col_x;
|
|
|
|
// y is not transposed but permuted
|
|
const int iy = channel*nrows_y + row_y;
|
|
|
|
tmp += xi * y[iy];
|
|
}
|
|
|
|
// dst is not transposed and not permuted
|
|
const int idst = channel*nrows_dst + row_dst;
|
|
|
|
// sum up partial sums and write back result
|
|
tmp = warp_reduce_sum(tmp);
|
|
|
|
if (threadIdx.x == 0) {
|
|
dst[idst] = tmp;
|
|
}
|
|
}
|
|
|
|
static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
|
|
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
|
|
const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
|
|
|
|
const half * x = (const half *) vx;
|
|
|
|
const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
|
|
const int channel = blockDim.z*blockIdx.z + threadIdx.z;
|
|
const int channel_x = channel / channel_x_divisor;
|
|
|
|
const int nrows_y = ncols_x;
|
|
const int nrows_dst = nrows_x;
|
|
const int row_dst = row_x;
|
|
|
|
const int idst = channel*nrows_dst + row_dst;
|
|
|
|
float tmp = 0.0f;
|
|
|
|
for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
|
|
const int col_x = col_x0 + threadIdx.x;
|
|
|
|
if (col_x >= ncols_x) {
|
|
break;
|
|
}
|
|
|
|
const int row_y = col_x;
|
|
|
|
const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
|
|
const int iy = channel*nrows_y + row_y;
|
|
|
|
const float xi = __half2float(x[ix]);
|
|
|
|
tmp += xi * y[iy];
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
tmp = warp_reduce_sum(tmp);
|
|
|
|
if (threadIdx.x == 0) {
|
|
dst[idst] = tmp;
|
|
}
|
|
}
|
|
|
|
static void ggml_mul_mat_p021_f16_f32_cuda(
|
|
const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
|
|
const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
|
|
|
|
const dim3 block_nums(1, nrows_x, nchannels_y);
|
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
|
|
}
|
|
|
|
static void ggml_mul_mat_vec_nc_f16_f32_cuda(
|
|
const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
|
|
const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
|
|
|
|
const dim3 block_nums(1, nrows_x, nchannels_y);
|
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
|
|
(vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
|
|
}
|
|
|
|
static cudaError_t ggml_cuda_cpy_tensor_2d(
|
|
void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
|
|
|
|
GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer));
|
|
char * src_ptr = (char *) src->data;
|
|
char * dst_ptr = (char *) dst;
|
|
|
|
const int64_t ne0 = src->ne[0];
|
|
const int64_t nb0 = src->nb[0];
|
|
const int64_t nb1 = src->nb[1];
|
|
const int64_t nb2 = src->nb[2];
|
|
const int64_t nb3 = src->nb[3];
|
|
const enum ggml_type type = src->type;
|
|
const int64_t ts = ggml_type_size(type);
|
|
const int64_t bs = ggml_blck_size(type);
|
|
int64_t i1_diff = i1_high - i1_low;
|
|
|
|
const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
|
|
if (nb0 == ts && nb1 == ts*ne0/bs) {
|
|
return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, cudaMemcpyDeviceToDevice, stream);
|
|
} else if (nb0 == ts) {
|
|
return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, cudaMemcpyDeviceToDevice, stream);
|
|
} else {
|
|
for (int64_t i1 = 0; i1 < i1_diff; i1++) {
|
|
const void * rx = (const void *) ((const char *) x + i1*nb1);
|
|
void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
|
|
// pretend the row is a matrix with cols=1
|
|
cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyDeviceToDevice, stream);
|
|
if (r != cudaSuccess) {
|
|
return r;
|
|
}
|
|
}
|
|
return cudaSuccess;
|
|
}
|
|
}
|
|
|
|
static void ggml_cuda_op_mul_mat_cublas(
|
|
ggml_backend_cuda_context & ctx,
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
|
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
|
const int64_t src1_padded_row_size, cudaStream_t stream) {
|
|
|
|
GGML_ASSERT(src0_dd_i != nullptr);
|
|
GGML_ASSERT(src1_ddf_i != nullptr);
|
|
GGML_ASSERT(dst_dd_i != nullptr);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne10 = src1->ne[0];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
|
|
const int64_t row_diff = row_high - row_low;
|
|
|
|
int id = ggml_cuda_get_device();
|
|
|
|
// the main device has a larger memory buffer to hold the results from all GPUs
|
|
// ldc == nrows of the matrix that cuBLAS writes into
|
|
int64_t ldc = id == ctx.device ? ne0 : row_diff;
|
|
|
|
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
|
|
|
if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
|
|
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
|
|
ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool());
|
|
if (src0->type != GGML_TYPE_F16) {
|
|
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
|
|
GGML_ASSERT(to_fp16_cuda != nullptr);
|
|
size_t ne = row_diff*ne00;
|
|
src0_as_f16.alloc(ne);
|
|
to_fp16_cuda(src0_dd_i, src0_as_f16.get(), ne, stream);
|
|
}
|
|
const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get();
|
|
|
|
ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool());
|
|
if (src1->type != GGML_TYPE_F16) {
|
|
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
|
|
GGML_ASSERT(to_fp16_cuda != nullptr);
|
|
size_t ne = src1_ncols*ne10;
|
|
src1_as_f16.alloc(ne);
|
|
to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
|
|
}
|
|
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
|
|
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(), row_diff*src1_ncols);
|
|
|
|
const half alpha_f16 = 1.0f;
|
|
const half beta_f16 = 0.0f;
|
|
|
|
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
|
|
CUBLAS_CHECK(
|
|
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
|
|
row_diff, src1_ncols, ne10,
|
|
&alpha_f16, src0_ptr, CUDA_R_16F, ne00,
|
|
src1_ptr, CUDA_R_16F, ne10,
|
|
&beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
|
|
CUBLAS_COMPUTE_16F,
|
|
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
|
|
|
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
|
|
to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
|
|
} else {
|
|
ggml_cuda_pool_alloc<float> src0_ddq_as_f32(ctx.pool(id));
|
|
ggml_cuda_pool_alloc<float> src1_ddq_as_f32(ctx.pool(id));
|
|
|
|
if (src0->type != GGML_TYPE_F32) {
|
|
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
|
|
GGML_ASSERT(to_fp32_cuda != nullptr);
|
|
src0_ddq_as_f32.alloc(row_diff*ne00);
|
|
to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
|
|
}
|
|
if (src1->type != GGML_TYPE_F32) {
|
|
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type);
|
|
GGML_ASSERT(to_fp32_cuda != nullptr);
|
|
src1_ddq_as_f32.alloc(src1_ncols*ne10);
|
|
to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
|
|
}
|
|
|
|
const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
|
|
const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
|
|
|
|
const float alpha = 1.0f;
|
|
const float beta = 0.0f;
|
|
|
|
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
|
|
CUBLAS_CHECK(
|
|
cublasSgemm(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
|
|
row_diff, src1_ncols, ne10,
|
|
&alpha, src0_ddf_i, ne00,
|
|
src1_ddf1_i, ne10,
|
|
&beta, dst_dd_i, ldc));
|
|
}
|
|
|
|
GGML_UNUSED(dst);
|
|
GGML_UNUSED(src1_ddq_i);
|
|
GGML_UNUSED(src1_padded_row_size);
|
|
}
|
|
|
|
static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
|
|
static bool peer_access_enabled = false;
|
|
|
|
const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE;
|
|
|
|
if (peer_access_enabled == enable_peer_access) {
|
|
return;
|
|
}
|
|
|
|
#ifdef NDEBUG
|
|
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
|
|
ggml_cuda_set_device(id);
|
|
CUDA_CHECK(cudaDeviceSynchronize());
|
|
}
|
|
|
|
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
|
|
ggml_cuda_set_device(id);
|
|
|
|
for (int id_other = 0; id_other < ggml_backend_cuda_get_device_count(); ++id_other) {
|
|
if (id == id_other) {
|
|
continue;
|
|
}
|
|
if (id != main_device && id_other != main_device) {
|
|
continue;
|
|
}
|
|
|
|
int can_access_peer;
|
|
CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other));
|
|
if (can_access_peer) {
|
|
if (enable_peer_access) {
|
|
cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0);
|
|
if (err != cudaErrorPeerAccessAlreadyEnabled) {
|
|
CUDA_CHECK(err);
|
|
}
|
|
} else {
|
|
cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
|
|
if (err != cudaErrorPeerAccessNotEnabled) {
|
|
CUDA_CHECK(err);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ggml_cuda_set_device(main_device);
|
|
#endif // NDEBUG
|
|
|
|
peer_access_enabled = enable_peer_access;
|
|
|
|
GGML_UNUSED(main_device);
|
|
}
|
|
|
|
static void ggml_cuda_op_mul_mat(
|
|
ggml_backend_cuda_context & ctx,
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op,
|
|
const bool convert_src1_to_q8_1) {
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
const int64_t ne12 = src1->ne[2];
|
|
const int64_t ne13 = src1->ne[3];
|
|
const int64_t nrows1 = ggml_nrows(src1);
|
|
|
|
GGML_ASSERT(ne03 == ne13);
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
|
|
const int64_t nb2 = dst->nb[2];
|
|
const int64_t nb3 = dst->nb[3];
|
|
|
|
GGML_ASSERT(ggml_backend_buffer_is_cuda(dst->buffer));
|
|
GGML_ASSERT(ggml_backend_buffer_is_cuda(src1->buffer));
|
|
ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context;
|
|
ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *) dst->buffer->context;
|
|
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
|
|
|
|
GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
|
|
|
|
const int64_t i02_divisor = ne12 / ne02;
|
|
|
|
const size_t src0_ts = ggml_type_size(src0->type);
|
|
const size_t src0_bs = ggml_blck_size(src0->type);
|
|
const size_t q8_1_ts = sizeof(block_q8_1);
|
|
const size_t q8_1_bs = QK8_1;
|
|
|
|
const bool src0_is_contiguous = ggml_is_contiguous(src0);
|
|
const bool src1_is_contiguous = ggml_is_contiguous(src1);
|
|
|
|
const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
|
|
|
|
const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
|
|
GGML_ASSERT(!(split && ne02 > 1));
|
|
GGML_ASSERT(!(split && ne03 > 1));
|
|
GGML_ASSERT(!(split && ne02 < ne12));
|
|
|
|
ggml_tensor_extra_gpu * src0_extra = split ? (ggml_tensor_extra_gpu *) src0->extra : nullptr;
|
|
|
|
|
|
std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
|
|
if (split) {
|
|
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
|
|
tensor_split = buft_ctx->tensor_split;
|
|
}
|
|
|
|
struct dev_data {
|
|
ggml_cuda_pool_alloc<char> src0_dd_alloc;
|
|
ggml_cuda_pool_alloc<float> src1_ddf_alloc;
|
|
ggml_cuda_pool_alloc<char> src1_ddq_alloc;
|
|
ggml_cuda_pool_alloc<float> dst_dd_alloc;
|
|
|
|
char * src0_dd = nullptr;
|
|
float * src1_ddf = nullptr; // float
|
|
char * src1_ddq = nullptr; // q8_1
|
|
float * dst_dd = nullptr;
|
|
|
|
int64_t row_low;
|
|
int64_t row_high;
|
|
};
|
|
|
|
dev_data dev[GGML_CUDA_MAX_DEVICES];
|
|
|
|
int used_devices = 0;
|
|
|
|
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
|
|
// by default, use all rows
|
|
dev[id].row_low = 0;
|
|
dev[id].row_high = ne01;
|
|
|
|
// for multi GPU, get the row boundaries from tensor split
|
|
// and round to mul_mat_q tile sizes
|
|
if (split) {
|
|
const int64_t rounding = get_row_rounding(src0->type, tensor_split);
|
|
|
|
if (id != 0) {
|
|
dev[id].row_low = ne01*tensor_split[id];
|
|
if (dev[id].row_low < ne01) {
|
|
dev[id].row_low -= dev[id].row_low % rounding;
|
|
}
|
|
}
|
|
|
|
if (id != ggml_backend_cuda_get_device_count() - 1) {
|
|
dev[id].row_high = ne01*tensor_split[id + 1];
|
|
if (dev[id].row_high < ne01) {
|
|
dev[id].row_high -= dev[id].row_high % rounding;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
|
|
if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
|
|
continue;
|
|
}
|
|
|
|
used_devices++;
|
|
|
|
const bool src1_on_device = id == src1_ctx->device;
|
|
const bool dst_on_device = id == dst_ctx->device;
|
|
|
|
ggml_cuda_set_device(id);
|
|
cudaStream_t stream = ctx.stream(id, 0);
|
|
|
|
if (src0_is_contiguous) {
|
|
dev[id].src0_dd = split ? (char *) src0_extra->data_device[id] : (char *) src0->data;
|
|
} else {
|
|
dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), ggml_nbytes(src0));
|
|
}
|
|
|
|
if (src1_on_device && src1_is_contiguous) {
|
|
dev[id].src1_ddf = (float *) src1->data;
|
|
} else {
|
|
dev[id].src1_ddf = dev[id].src1_ddf_alloc.alloc(ctx.pool(id), ggml_nelements(src1));
|
|
}
|
|
|
|
if (convert_src1_to_q8_1) {
|
|
dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(ctx.pool(id), nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
|
|
|
|
if (src1_on_device && src1_is_contiguous) {
|
|
quantize_row_q8_1_cuda(dev[id].src1_ddf, dev[id].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
}
|
|
}
|
|
|
|
if (dst_on_device) {
|
|
dev[id].dst_dd = (float *) dst->data;
|
|
} else {
|
|
const size_t size_dst_ddf = split ? (dev[id].row_high - dev[id].row_low)*ne1 : ggml_nelements(dst);
|
|
dev[id].dst_dd = dev[id].dst_dd_alloc.alloc(ctx.pool(id), size_dst_ddf);
|
|
}
|
|
}
|
|
|
|
// if multiple devices are used they need to wait for the main device
|
|
// here an event is recorded that signals that the main device has finished calculating the input data
|
|
if (split && used_devices > 1) {
|
|
ggml_cuda_set_device(ctx.device);
|
|
CUDA_CHECK(cudaEventRecord(src0_extra->events[ctx.device][0], ctx.stream()));
|
|
}
|
|
|
|
const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
|
|
for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
|
|
const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_CUDA_MAX_STREAMS : 0;
|
|
const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
|
|
|
|
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
|
|
if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
|
|
continue;
|
|
}
|
|
|
|
const bool src1_on_device = id == src1_ctx->device;
|
|
const bool dst_on_device = id == dst_ctx->device;
|
|
const int64_t row_diff = dev[id].row_high - dev[id].row_low;
|
|
|
|
ggml_cuda_set_device(id);
|
|
cudaStream_t stream = ctx.stream(id, is);
|
|
|
|
// wait for main GPU data if necessary
|
|
if (split && (id != ctx.device || is != 0)) {
|
|
CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[ctx.device][0], 0));
|
|
}
|
|
|
|
for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
|
|
const int64_t i03 = i0 / ne12;
|
|
const int64_t i02 = i0 % ne12;
|
|
|
|
const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
|
|
|
|
// for split tensors the data begins at i0 == i0_offset_low
|
|
char * src0_dd_i = dev[id].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
|
|
float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
|
|
char * src1_ddq_i = dev[id].src1_ddq + src1_ddq_i_offset;
|
|
float * dst_dd_i = dev[id].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff);
|
|
|
|
// the main device memory buffer can be on VRAM scratch, with space for all partial results
|
|
// in that case an offset on dst_ddf_i is needed
|
|
if (id == ctx.device) {
|
|
dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
|
|
}
|
|
|
|
// copy src0, src1 to device if necessary
|
|
if (src1_is_contiguous) {
|
|
if (id != ctx.device) {
|
|
if (convert_src1_to_q8_1) {
|
|
char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset;
|
|
CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddq_i, id, src1_ddq_i_source, ctx.device,
|
|
src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, stream));
|
|
} else {
|
|
float * src1_ddf_i_source = (float *) src1->data;
|
|
src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
|
|
CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddf_i, id, src1_ddf_i_source, ctx.device,
|
|
src1_ncols*ne10*sizeof(float), stream));
|
|
}
|
|
}
|
|
} else if (src1_on_device && !src1_is_contiguous) {
|
|
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
|
|
src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
if (convert_src1_to_q8_1 && !src1_is_contiguous) {
|
|
quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
}
|
|
|
|
if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
|
|
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream));
|
|
}
|
|
|
|
// do the computation
|
|
op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
|
|
dev[id].row_low, dev[id].row_high, src1_ncols, src1_padded_col_size, stream);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
// copy dst to host or other device if necessary
|
|
if (!dst_on_device) {
|
|
void * dst_off_device = dst->data;
|
|
if (split) {
|
|
// src0 = weight matrix is saved as a transposed matrix for better memory layout.
|
|
// dst is NOT transposed.
|
|
// The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
|
|
// Instead they need to be copied to the correct slice in ne0 = dst row index.
|
|
// If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
|
|
float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
|
|
GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
|
|
dhf_dst_i += src1_col_0*ne0 + dev[id].row_low;
|
|
#if !defined(GGML_USE_HIPBLAS)
|
|
// cudaMemcpy2DAsync may fail with copies between vmm pools of different devices
|
|
cudaMemcpy3DPeerParms p = {};
|
|
p.dstDevice = ctx.device;
|
|
p.dstPtr = make_cudaPitchedPtr(dhf_dst_i, ne0*sizeof(float), row_diff, src1_ncols);
|
|
p.srcDevice = id;
|
|
p.srcPtr = make_cudaPitchedPtr(dst_dd_i, row_diff*sizeof(float), row_diff, src1_ncols);
|
|
p.extent = make_cudaExtent(row_diff*sizeof(float), src1_ncols, 1);
|
|
CUDA_CHECK(cudaMemcpy3DPeerAsync(&p, stream));
|
|
#else
|
|
// HIP does not support cudaMemcpy3DPeerAsync or vmm pools
|
|
CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float),
|
|
dst_dd_i, row_diff*sizeof(float),
|
|
row_diff*sizeof(float), src1_ncols,
|
|
cudaMemcpyDeviceToDevice, stream));
|
|
#endif
|
|
} else {
|
|
float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
|
|
GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
|
|
dhf_dst_i += src1_col_0*ne0;
|
|
CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), cudaMemcpyDeviceToDevice, stream));
|
|
}
|
|
}
|
|
|
|
// add event for the main device to wait on until other device is done
|
|
if (split && (id != ctx.device || is != 0)) {
|
|
CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// main device waits for all other devices to be finished
|
|
if (split && ggml_backend_cuda_get_device_count() > 1) {
|
|
int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
|
|
is_max = is_max <= GGML_CUDA_MAX_STREAMS ? is_max : GGML_CUDA_MAX_STREAMS;
|
|
|
|
ggml_cuda_set_device(ctx.device);
|
|
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
|
|
if (dev[id].row_low == dev[id].row_high) {
|
|
continue;
|
|
}
|
|
for (int64_t is = 0; is < is_max; ++is) {
|
|
CUDA_CHECK(cudaStreamWaitEvent(ctx.stream(), src0_extra->events[id][is], 0));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
|
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
|
GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
|
|
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
|
|
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
|
|
const int64_t ne12 = src1->ne[2];
|
|
|
|
cudaStream_t main_stream = ctx.stream();
|
|
|
|
void * src0_ddq = src0->data;
|
|
float * src1_ddf = (float *) src1->data;
|
|
float * dst_ddf = (float *) dst->data;
|
|
|
|
ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
|
|
}
|
|
|
|
static void ggml_cuda_mul_mat_vec_nc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
|
GGML_ASSERT(!ggml_is_transposed(src0));
|
|
GGML_ASSERT(!ggml_is_transposed(src1));
|
|
GGML_ASSERT(!ggml_is_permuted(src0));
|
|
GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
|
|
const int64_t nb01 = src0->nb[1];
|
|
const int64_t nb02 = src0->nb[2];
|
|
|
|
const int64_t ne12 = src1->ne[2];
|
|
|
|
cudaStream_t main_stream = ctx.stream();
|
|
|
|
void * src0_ddq = src0->data;
|
|
float * src1_ddf = (float *) src1->data;
|
|
float * dst_ddf = (float *) dst->data;
|
|
|
|
const int64_t row_stride_x = nb01 / sizeof(half);
|
|
const int64_t channel_stride_x = nb02 / sizeof(half);
|
|
|
|
ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
|
|
}
|
|
|
|
static __global__ void k_compute_batched_ptrs(
|
|
const half * src0_as_f16, const half * src1_as_f16, char * dst,
|
|
const void ** ptrs_src, void ** ptrs_dst,
|
|
int64_t ne12, int64_t ne13,
|
|
int64_t ne23,
|
|
size_t nb02, size_t nb03,
|
|
size_t nb12, size_t nb13,
|
|
size_t nbd2, size_t nbd3,
|
|
int64_t r2, int64_t r3) {
|
|
int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
if (i13 >= ne13 || i12 >= ne12) {
|
|
return;
|
|
}
|
|
|
|
int64_t i03 = i13 / r3;
|
|
int64_t i02 = i12 / r2;
|
|
|
|
ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
|
|
ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
|
|
ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
|
|
}
|
|
|
|
static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(!ggml_is_transposed(src0));
|
|
GGML_ASSERT(!ggml_is_transposed(src1));
|
|
|
|
GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
const int64_t ne_dst = ggml_nelements(dst);
|
|
|
|
cudaStream_t main_stream = ctx.stream();
|
|
|
|
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(), main_stream));
|
|
|
|
void * src0_ddq = src0->data;
|
|
half * src0_f16 = (half *) src0_ddq;
|
|
float * src1_ddf = (float *) src1->data;
|
|
float * dst_ddf = (float *) dst->data;
|
|
|
|
// convert src1 to fp16
|
|
ggml_cuda_pool_alloc<half> src1_f16_alloc(ctx.pool());
|
|
if (src1->type != GGML_TYPE_F16) {
|
|
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
|
|
const int64_t ne_src1 = ggml_nelements(src1);
|
|
src1_f16_alloc.alloc(ne_src1);
|
|
GGML_ASSERT(to_fp16_cuda != nullptr);
|
|
to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
|
|
}
|
|
half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get();
|
|
|
|
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool());
|
|
char * dst_t;
|
|
|
|
cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
|
|
cudaDataType_t cu_data_type = CUDA_R_16F;
|
|
|
|
// dst strides
|
|
size_t nbd2 = dst->nb[2];
|
|
size_t nbd3 = dst->nb[3];
|
|
|
|
const half alpha_f16 = 1.0f;
|
|
const half beta_f16 = 0.0f;
|
|
|
|
const float alpha_f32 = 1.0f;
|
|
const float beta_f32 = 0.0f;
|
|
|
|
const void * alpha = &alpha_f16;
|
|
const void * beta = &beta_f16;
|
|
|
|
if (dst->op_params[0] == GGML_PREC_DEFAULT) {
|
|
dst_t = (char *) dst_f16.alloc(ne_dst);
|
|
|
|
nbd2 /= sizeof(float) / sizeof(half);
|
|
nbd3 /= sizeof(float) / sizeof(half);
|
|
} else {
|
|
dst_t = (char *) dst_ddf;
|
|
|
|
cu_compute_type = CUBLAS_COMPUTE_32F;
|
|
cu_data_type = CUDA_R_32F;
|
|
|
|
alpha = &alpha_f32;
|
|
beta = &beta_f32;
|
|
}
|
|
|
|
GGML_ASSERT(ne12 % ne02 == 0);
|
|
GGML_ASSERT(ne13 % ne03 == 0);
|
|
|
|
// broadcast factors
|
|
const int64_t r2 = ne12/ne02;
|
|
const int64_t r3 = ne13/ne03;
|
|
|
|
#if 0
|
|
// use cublasGemmEx
|
|
{
|
|
for (int i13 = 0; i13 < ne13; ++i13) {
|
|
for (int i12 = 0; i12 < ne12; ++i12) {
|
|
int i03 = i13 / r3;
|
|
int i02 = i12 / r2;
|
|
|
|
CUBLAS_CHECK(
|
|
cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
|
|
ne01, ne11, ne10,
|
|
alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half),
|
|
(const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float),
|
|
beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01,
|
|
cu_compute_type,
|
|
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
|
|
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
|
|
// use cublasGemmStridedBatchedEx
|
|
CUBLAS_CHECK(
|
|
cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
|
|
ne01, ne11, ne10,
|
|
alpha, (const char *) src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA
|
|
(const char *) src1_f16, CUDA_R_16F, nb11/nb10, nb12/nb10, // strideB
|
|
beta, ( char *) dst_t, cu_data_type, ne01, nb2/nb0, // strideC
|
|
ne12*ne13,
|
|
cu_compute_type,
|
|
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
|
} else {
|
|
// use cublasGemmBatchedEx
|
|
const int ne23 = ne12*ne13;
|
|
|
|
ggml_cuda_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
|
|
ggml_cuda_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23);
|
|
|
|
dim3 block_dims(ne13, ne12);
|
|
k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
|
|
src0_f16, src1_f16, dst_t,
|
|
ptrs_src.get(), ptrs_dst.get(),
|
|
ne12, ne13,
|
|
ne23,
|
|
nb02, nb03,
|
|
src1->type == GGML_TYPE_F16 ? nb12 : nb12/2,
|
|
src1->type == GGML_TYPE_F16 ? nb13 : nb13/2,
|
|
nbd2, nbd3,
|
|
r2, r3);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
CUBLAS_CHECK(
|
|
cublasGemmBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
|
|
ne01, ne11, ne10,
|
|
alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/nb00,
|
|
(const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, nb11/nb10,
|
|
beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01,
|
|
ne23,
|
|
cu_compute_type,
|
|
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
|
}
|
|
#endif
|
|
|
|
if (dst->op_params[0] == GGML_PREC_DEFAULT) {
|
|
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
|
|
to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream);
|
|
}
|
|
}
|
|
|
|
static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
|
|
|
|
int64_t min_compute_capability = INT_MAX;
|
|
|
|
bool any_pascal_with_slow_fp16 = false;
|
|
if (split) {
|
|
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
|
|
auto & tensor_split = buft_ctx->tensor_split;
|
|
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
|
|
// skip devices that are not going to do any work:
|
|
if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
|
|
continue;
|
|
}
|
|
|
|
if (min_compute_capability > ggml_cuda_info().devices[id].cc) {
|
|
min_compute_capability = ggml_cuda_info().devices[id].cc;
|
|
}
|
|
if (ggml_cuda_info().devices[id].cc == 610) {
|
|
any_pascal_with_slow_fp16 = true;
|
|
}
|
|
}
|
|
} else {
|
|
min_compute_capability = ggml_cuda_info().devices[ctx.device].cc;
|
|
any_pascal_with_slow_fp16 = ggml_cuda_info().devices[ctx.device].cc == 610;
|
|
}
|
|
|
|
// check data types and tensor shapes for custom matrix multiplication kernels:
|
|
bool use_dequantize_mul_mat_vec = (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16)
|
|
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
|
|
&& src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src1->ne[1] == 1;
|
|
|
|
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
|
|
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
|
|
&& src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
|
|
|
|
bool use_mul_mat_q = ggml_cuda_supports_mmq(src0->type)
|
|
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
|
|
|
|
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
|
|
|
const bool fp16_performance_good = min_compute_capability >= CC_RDNA1;
|
|
|
|
#ifdef CUDA_USE_TENSOR_CORES
|
|
use_mul_mat_q = use_mul_mat_q && min_compute_capability < CC_RDNA3;
|
|
#endif // CUDA_USE_TENSOR_CORES
|
|
|
|
#else
|
|
|
|
// fp16 performance is good on Volta or newer and on P100 (compute capability 6.0)
|
|
const bool fp16_performance_good = min_compute_capability >= CC_PASCAL && !any_pascal_with_slow_fp16;
|
|
|
|
// mmvq and mmq need the __dp4a instruction which on NVIDIA is only available for CC >= 6.1
|
|
use_mul_mat_vec_q = use_mul_mat_vec_q && min_compute_capability >= MIN_CC_DP4A;
|
|
use_mul_mat_q = use_mul_mat_q && min_compute_capability >= MIN_CC_DP4A;
|
|
|
|
#ifdef CUDA_USE_TENSOR_CORES
|
|
// when tensor cores are available, use them for large batch size
|
|
// ref: https://github.com/ggerganov/llama.cpp/pull/3776
|
|
use_mul_mat_q = use_mul_mat_q && (!fp16_performance_good || src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
|
|
#endif // CUDA_USE_TENSOR_CORES
|
|
|
|
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
|
|
|
// if mmvq is available it's a better choice than dmmv:
|
|
#ifndef GGML_CUDA_FORCE_DMMV
|
|
use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
|
|
#endif // GGML_CUDA_FORCE_DMMV
|
|
|
|
// debug helpers
|
|
//printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
|
|
//printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
|
|
//printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
|
|
//printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
|
|
//printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
|
|
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
|
|
|
|
if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
|
|
// KQ single-batch
|
|
ggml_cuda_mul_mat_vec_p021(ctx, src0, src1, dst);
|
|
} else if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
|
|
// KQV single-batch
|
|
ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst);
|
|
} else if (!split && fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
|
|
// KQ + KQV multi-batch
|
|
ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
|
|
} else if (use_dequantize_mul_mat_vec) {
|
|
ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false);
|
|
} else if (use_mul_mat_vec_q) {
|
|
ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, true);
|
|
} else if (use_mul_mat_q) {
|
|
ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_q, true);
|
|
} else {
|
|
ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
|
|
}
|
|
}
|
|
|
|
static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
const ggml_tensor * src0 = dst->src[0];
|
|
const ggml_tensor * src1 = dst->src[1];
|
|
const ggml_tensor * ids = dst->src[2];
|
|
|
|
GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0->buffer) && "mul_mat_id does not support split buffers");
|
|
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
const size_t nb11 = src1->nb[1];
|
|
const size_t nb1 = dst->nb[1];
|
|
|
|
const int32_t id = ((int32_t *) dst->op_params)[0];
|
|
const int32_t n_as = src0->ne[2];
|
|
|
|
std::vector<char> ids_host(ggml_nbytes(ids));
|
|
const char * ids_dev = (const char *) ids->data;
|
|
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
|
|
CUDA_CHECK(cudaStreamSynchronize(stream));
|
|
|
|
ggml_tensor src0_row = *src0;
|
|
ggml_tensor src1_row = *src1;
|
|
ggml_tensor dst_row = *dst;
|
|
|
|
char * src0_original = (char *) src0->data;
|
|
char * src1_original = (char *) src1->data;
|
|
char * dst_original = (char *) dst->data;
|
|
|
|
src0_row.ne[2] = 1;
|
|
src0_row.ne[3] = 1;
|
|
src0_row.nb[3] = src0->nb[2];
|
|
|
|
if (src1->ne[1] == 1) {
|
|
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
|
const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
|
|
|
|
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
|
|
|
src0_row.data = src0_original + row_id*src0->nb[2];
|
|
src1_row.data = src1_original + i01*src1->nb[1];
|
|
dst_row.data = dst_original + i01*dst->nb[1];
|
|
|
|
ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
|
|
}
|
|
} else {
|
|
ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
|
|
ggml_cuda_pool_alloc<char> dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
|
|
|
|
src1_row.data = src1_contiguous.get();
|
|
dst_row.data = dst_contiguous.get();
|
|
|
|
for (int32_t row_id = 0; row_id < n_as; ++row_id) {
|
|
int64_t num_src1_rows = 0;
|
|
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
|
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
|
|
|
|
if (row_id_i != row_id) {
|
|
continue;
|
|
}
|
|
|
|
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
|
|
|
CUDA_CHECK(cudaMemcpyAsync(src1_contiguous.get() + num_src1_rows*nb11, src1_original + i01*nb11,
|
|
nb11, cudaMemcpyDeviceToDevice, stream));
|
|
num_src1_rows++;
|
|
}
|
|
|
|
if (num_src1_rows == 0) {
|
|
continue;
|
|
}
|
|
|
|
src0_row.data = src0_original + row_id*src0->nb[2];
|
|
|
|
src1_row.ne[1] = num_src1_rows;
|
|
dst_row.ne[1] = num_src1_rows;
|
|
|
|
src1_row.nb[1] = nb11;
|
|
src1_row.nb[2] = num_src1_rows*nb11;
|
|
src1_row.nb[3] = num_src1_rows*nb11;
|
|
|
|
dst_row.nb[1] = nb1;
|
|
dst_row.nb[2] = num_src1_rows*nb1;
|
|
dst_row.nb[3] = num_src1_rows*nb1;
|
|
|
|
ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
|
|
|
|
num_src1_rows = 0;
|
|
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
|
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
|
|
|
|
if (row_id_i != row_id) {
|
|
continue;
|
|
}
|
|
|
|
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
|
|
|
CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous.get() + num_src1_rows*nb1,
|
|
nb1, cudaMemcpyDeviceToDevice, stream));
|
|
num_src1_rows++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst) {
|
|
// why is this here instead of mul_mat?
|
|
if (dst->src[0] != nullptr && ggml_backend_buffer_is_cuda_split(dst->src[0]->buffer)) {
|
|
ggml_cuda_set_peer_access(dst->src[1]->ne[1], ctx.device);
|
|
}
|
|
|
|
switch (dst->op) {
|
|
case GGML_OP_REPEAT:
|
|
ggml_cuda_op_repeat(ctx, dst);
|
|
break;
|
|
case GGML_OP_GET_ROWS:
|
|
ggml_cuda_op_get_rows(ctx, dst);
|
|
break;
|
|
case GGML_OP_DUP:
|
|
ggml_cuda_dup(ctx, dst);
|
|
break;
|
|
case GGML_OP_CPY:
|
|
ggml_cuda_cpy(ctx, dst->src[0], dst->src[1]);
|
|
break;
|
|
case GGML_OP_CONT:
|
|
ggml_cuda_dup(ctx, dst);
|
|
break;
|
|
case GGML_OP_ADD:
|
|
ggml_cuda_op_add(ctx, dst);
|
|
break;
|
|
case GGML_OP_ACC:
|
|
ggml_cuda_op_acc(ctx, dst);
|
|
break;
|
|
case GGML_OP_MUL:
|
|
ggml_cuda_op_mul(ctx, dst);
|
|
break;
|
|
case GGML_OP_DIV:
|
|
ggml_cuda_op_div(ctx, dst);
|
|
break;
|
|
case GGML_OP_UNARY:
|
|
switch (ggml_get_unary_op(dst)) {
|
|
case GGML_UNARY_OP_GELU:
|
|
ggml_cuda_op_gelu(ctx, dst);
|
|
break;
|
|
case GGML_UNARY_OP_SILU:
|
|
ggml_cuda_op_silu(ctx, dst);
|
|
break;
|
|
case GGML_UNARY_OP_GELU_QUICK:
|
|
ggml_cuda_op_gelu_quick(ctx, dst);
|
|
break;
|
|
case GGML_UNARY_OP_TANH:
|
|
ggml_cuda_op_tanh(ctx, dst);
|
|
break;
|
|
case GGML_UNARY_OP_RELU:
|
|
ggml_cuda_op_relu(ctx, dst);
|
|
break;
|
|
case GGML_UNARY_OP_HARDSIGMOID:
|
|
ggml_cuda_op_hardsigmoid(ctx, dst);
|
|
break;
|
|
case GGML_UNARY_OP_HARDSWISH:
|
|
ggml_cuda_op_hardswish(ctx, dst);
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
break;
|
|
case GGML_OP_NORM:
|
|
ggml_cuda_op_norm(ctx, dst);
|
|
break;
|
|
case GGML_OP_GROUP_NORM:
|
|
ggml_cuda_op_group_norm(ctx, dst);
|
|
break;
|
|
case GGML_OP_CONCAT:
|
|
ggml_cuda_op_concat(ctx, dst);
|
|
break;
|
|
case GGML_OP_UPSCALE:
|
|
ggml_cuda_op_upscale(ctx, dst);
|
|
break;
|
|
case GGML_OP_PAD:
|
|
ggml_cuda_op_pad(ctx, dst);
|
|
break;
|
|
case GGML_OP_ARANGE:
|
|
ggml_cuda_op_arange(ctx, dst);
|
|
break;
|
|
case GGML_OP_TIMESTEP_EMBEDDING:
|
|
ggml_cuda_op_timestep_embedding(ctx, dst);
|
|
break;
|
|
case GGML_OP_LEAKY_RELU:
|
|
ggml_cuda_op_leaky_relu(ctx, dst);
|
|
break;
|
|
case GGML_OP_RMS_NORM:
|
|
ggml_cuda_op_rms_norm(ctx, dst);
|
|
break;
|
|
case GGML_OP_MUL_MAT:
|
|
if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) {
|
|
fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, dst->name, dst->src[0]->ne[3], dst->src[1]->ne[3]);
|
|
return false;
|
|
} else {
|
|
ggml_cuda_mul_mat(ctx, dst->src[0], dst->src[1], dst);
|
|
}
|
|
break;
|
|
case GGML_OP_MUL_MAT_ID:
|
|
ggml_cuda_mul_mat_id(ctx, dst);
|
|
break;
|
|
case GGML_OP_SCALE:
|
|
ggml_cuda_op_scale(ctx, dst);
|
|
break;
|
|
case GGML_OP_SQR:
|
|
ggml_cuda_op_sqr(ctx, dst);
|
|
break;
|
|
case GGML_OP_CLAMP:
|
|
ggml_cuda_op_clamp(ctx, dst);
|
|
break;
|
|
case GGML_OP_NONE:
|
|
case GGML_OP_RESHAPE:
|
|
case GGML_OP_VIEW:
|
|
case GGML_OP_PERMUTE:
|
|
case GGML_OP_TRANSPOSE:
|
|
break;
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
ggml_cuda_op_diag_mask_inf(ctx, dst);
|
|
break;
|
|
case GGML_OP_SOFT_MAX:
|
|
ggml_cuda_op_soft_max(ctx, dst);
|
|
break;
|
|
case GGML_OP_ROPE:
|
|
ggml_cuda_op_rope(ctx, dst);
|
|
break;
|
|
case GGML_OP_ALIBI:
|
|
ggml_cuda_op_alibi(ctx, dst);
|
|
break;
|
|
case GGML_OP_IM2COL:
|
|
ggml_cuda_op_im2col(ctx, dst);
|
|
break;
|
|
case GGML_OP_POOL_2D:
|
|
ggml_cuda_op_pool2d(ctx, dst);
|
|
break;
|
|
case GGML_OP_SUM_ROWS:
|
|
ggml_cuda_op_sum_rows(ctx, dst);
|
|
break;
|
|
case GGML_OP_ARGSORT:
|
|
ggml_cuda_op_argsort(ctx, dst);
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
cudaError_t err = cudaGetLastError();
|
|
if (err != cudaSuccess) {
|
|
fprintf(stderr, "%s: %s failed\n", __func__, ggml_op_desc(dst));
|
|
CUDA_CHECK(err);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// backend
|
|
|
|
GGML_CALL static const char * ggml_backend_cuda_name(ggml_backend_t backend) {
|
|
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
|
|
|
return cuda_ctx->name.c_str();
|
|
}
|
|
|
|
GGML_CALL static void ggml_backend_cuda_free(ggml_backend_t backend) {
|
|
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
|
|
|
delete cuda_ctx;
|
|
delete backend;
|
|
}
|
|
|
|
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) {
|
|
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
|
|
|
return ggml_backend_cuda_buffer_type(cuda_ctx->device);
|
|
}
|
|
|
|
GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
|
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
|
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
|
|
|
|
GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
|
|
|
|
CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream()));
|
|
}
|
|
|
|
GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
|
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
|
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
|
|
|
|
GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
|
|
|
|
CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream()));
|
|
}
|
|
|
|
GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
|
|
GGML_ASSERT(ggml_backend_is_cuda(backend_src) || ggml_backend_is_cuda(backend_dst));
|
|
|
|
ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer;
|
|
ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer;
|
|
|
|
if (!ggml_backend_buffer_is_cuda(src->buffer)) {
|
|
return false;
|
|
}
|
|
|
|
if (!ggml_backend_buffer_is_cuda(dst->buffer)) {
|
|
return false;
|
|
}
|
|
|
|
// device -> device
|
|
ggml_backend_cuda_context * cuda_ctx_src = (ggml_backend_cuda_context *)backend_src->context;
|
|
ggml_backend_cuda_context * cuda_ctx_dst = (ggml_backend_cuda_context *)backend_dst->context;
|
|
|
|
if (backend_src != backend_dst) {
|
|
ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context;
|
|
ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context;
|
|
|
|
GGML_ASSERT(cuda_ctx_src->device == buf_ctx_src->device);
|
|
GGML_ASSERT(cuda_ctx_dst->device == buf_ctx_dst->device);
|
|
|
|
// copy on src stream
|
|
if (cuda_ctx_src->device == cuda_ctx_dst->device) {
|
|
CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream()));
|
|
} else {
|
|
#ifdef GGML_CUDA_NO_PEER_COPY
|
|
return false;
|
|
#else
|
|
CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, cuda_ctx_dst->device, src->data, cuda_ctx_src->device, ggml_nbytes(dst), cuda_ctx_src->stream()));
|
|
#endif
|
|
}
|
|
|
|
// record event on src stream
|
|
if (!cuda_ctx_src->copy_event) {
|
|
ggml_cuda_set_device(cuda_ctx_src->device);
|
|
CUDA_CHECK(cudaEventCreateWithFlags(&cuda_ctx_src->copy_event, cudaEventDisableTiming));
|
|
}
|
|
|
|
CUDA_CHECK(cudaEventRecord(cuda_ctx_src->copy_event, cuda_ctx_src->stream()));
|
|
|
|
// wait on dst stream for the copy to complete
|
|
CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx_dst->stream(), cuda_ctx_src->copy_event, 0));
|
|
} else {
|
|
// src and dst are on the same backend
|
|
CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream()));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
|
|
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
|
|
|
CUDA_CHECK(cudaStreamSynchronize(cuda_ctx->stream()));
|
|
|
|
GGML_UNUSED(backend);
|
|
}
|
|
|
|
GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
|
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
|
|
|
ggml_cuda_set_device(cuda_ctx->device);
|
|
|
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
|
ggml_tensor * node = cgraph->nodes[i];
|
|
|
|
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
|
|
continue;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
if (node->src[j] != nullptr) {
|
|
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
bool ok = ggml_cuda_compute_forward(*cuda_ctx, node);
|
|
if (!ok) {
|
|
fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
|
|
}
|
|
GGML_ASSERT(ok);
|
|
}
|
|
|
|
return GGML_STATUS_SUCCESS;
|
|
}
|
|
|
|
GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
|
|
switch (op->op) {
|
|
case GGML_OP_UNARY:
|
|
switch (ggml_get_unary_op(op)) {
|
|
case GGML_UNARY_OP_GELU:
|
|
case GGML_UNARY_OP_SILU:
|
|
case GGML_UNARY_OP_RELU:
|
|
case GGML_UNARY_OP_HARDSIGMOID:
|
|
case GGML_UNARY_OP_HARDSWISH:
|
|
case GGML_UNARY_OP_GELU_QUICK:
|
|
case GGML_UNARY_OP_TANH:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
break;
|
|
case GGML_OP_MUL_MAT:
|
|
case GGML_OP_MUL_MAT_ID:
|
|
{
|
|
struct ggml_tensor * a;
|
|
struct ggml_tensor * b;
|
|
if (op->op == GGML_OP_MUL_MAT) {
|
|
a = op->src[0];
|
|
b = op->src[1];
|
|
} else {
|
|
a = op->src[2];
|
|
b = op->src[1];
|
|
}
|
|
if (a->ne[3] != b->ne[3]) {
|
|
return false;
|
|
}
|
|
ggml_type a_type = a->type;
|
|
if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS ||
|
|
a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ3_S ||
|
|
a_type == GGML_TYPE_IQ1_M || a_type == GGML_TYPE_IQ2_S || a_type == GGML_TYPE_IQ4_XS) {
|
|
if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
} break;
|
|
case GGML_OP_GET_ROWS:
|
|
{
|
|
switch (op->src[0]->type) {
|
|
case GGML_TYPE_F16:
|
|
case GGML_TYPE_F32:
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
} break;
|
|
case GGML_OP_CPY:
|
|
{
|
|
ggml_type src0_type = op->src[0]->type;
|
|
ggml_type src1_type = op->src[1]->type;
|
|
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
|
|
return true;
|
|
}
|
|
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
|
|
return true;
|
|
}
|
|
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
|
|
return true;
|
|
}
|
|
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
|
|
return true;
|
|
}
|
|
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
|
|
return true;
|
|
}
|
|
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_0) {
|
|
return true;
|
|
}
|
|
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_1) {
|
|
return true;
|
|
}
|
|
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) {
|
|
return true;
|
|
}
|
|
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
|
|
return true;
|
|
}
|
|
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
|
|
return true;
|
|
}
|
|
return false;
|
|
} break;
|
|
case GGML_OP_DUP:
|
|
case GGML_OP_REPEAT:
|
|
case GGML_OP_CONCAT:
|
|
{
|
|
ggml_type src0_type = op->src[0]->type;
|
|
return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
|
|
} break;
|
|
case GGML_OP_NONE:
|
|
case GGML_OP_RESHAPE:
|
|
case GGML_OP_VIEW:
|
|
case GGML_OP_PERMUTE:
|
|
case GGML_OP_TRANSPOSE:
|
|
case GGML_OP_NORM:
|
|
case GGML_OP_ADD:
|
|
case GGML_OP_MUL:
|
|
case GGML_OP_DIV:
|
|
case GGML_OP_RMS_NORM:
|
|
case GGML_OP_SCALE:
|
|
case GGML_OP_SQR:
|
|
case GGML_OP_CLAMP:
|
|
case GGML_OP_CONT:
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
case GGML_OP_SOFT_MAX:
|
|
case GGML_OP_ROPE:
|
|
case GGML_OP_ALIBI:
|
|
case GGML_OP_IM2COL:
|
|
case GGML_OP_POOL_2D:
|
|
case GGML_OP_SUM_ROWS:
|
|
case GGML_OP_ARGSORT:
|
|
case GGML_OP_ACC:
|
|
case GGML_OP_GROUP_NORM:
|
|
case GGML_OP_UPSCALE:
|
|
case GGML_OP_PAD:
|
|
case GGML_OP_ARANGE:
|
|
case GGML_OP_TIMESTEP_EMBEDDING:
|
|
case GGML_OP_LEAKY_RELU:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
GGML_UNUSED(backend);
|
|
}
|
|
|
|
GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
|
|
const int min_batch_size = 32;
|
|
|
|
return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS;
|
|
|
|
GGML_UNUSED(backend);
|
|
}
|
|
|
|
static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) {
|
|
#ifdef GGML_CUDA_NO_PEER_COPY
|
|
return nullptr;
|
|
#else
|
|
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
|
|
|
ggml_cuda_set_device(cuda_ctx->device);
|
|
|
|
cudaEvent_t event;
|
|
CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
|
|
|
|
return new ggml_backend_event {
|
|
/* .backend = */ backend,
|
|
/* .context = */ event,
|
|
};
|
|
#endif
|
|
}
|
|
|
|
static void ggml_backend_cuda_event_free(ggml_backend_event_t event) {
|
|
CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context));
|
|
|
|
delete event;
|
|
}
|
|
|
|
static void ggml_backend_cuda_event_record(ggml_backend_event_t event) {
|
|
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)event->backend->context;
|
|
|
|
CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream()));
|
|
}
|
|
|
|
static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
|
|
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
|
|
|
if (ggml_backend_is_cuda(event->backend)) {
|
|
CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0));
|
|
} else {
|
|
#if 0
|
|
// untested
|
|
auto wait_fn = [](void * user_data) {
|
|
ggml_backend_event_t event = (ggml_backend_event_t)user_data;
|
|
ggml_backend_event_synchronize(event);
|
|
};
|
|
|
|
CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event));
|
|
#endif
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
static void ggml_backend_cuda_event_synchronize(ggml_backend_event_t event) {
|
|
CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
|
|
}
|
|
|
|
static ggml_backend_i ggml_backend_cuda_interface = {
|
|
/* .get_name = */ ggml_backend_cuda_name,
|
|
/* .free = */ ggml_backend_cuda_free,
|
|
/* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type,
|
|
/* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async,
|
|
/* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async,
|
|
/* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async,
|
|
/* .synchronize = */ ggml_backend_cuda_synchronize,
|
|
/* .graph_plan_create = */ NULL,
|
|
/* .graph_plan_free = */ NULL,
|
|
/* .graph_plan_compute = */ NULL,
|
|
/* .graph_compute = */ ggml_backend_cuda_graph_compute,
|
|
/* .supports_op = */ ggml_backend_cuda_supports_op,
|
|
/* .offload_op = */ ggml_backend_cuda_offload_op,
|
|
/* .event_new = */ ggml_backend_cuda_event_new,
|
|
/* .event_free = */ ggml_backend_cuda_event_free,
|
|
/* .event_record = */ ggml_backend_cuda_event_record,
|
|
/* .event_wait = */ ggml_backend_cuda_event_wait,
|
|
/* .event_synchronize = */ ggml_backend_cuda_event_synchronize,
|
|
};
|
|
|
|
static ggml_guid_t ggml_backend_cuda_guid() {
|
|
static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 };
|
|
return &guid;
|
|
}
|
|
|
|
GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
|
|
if (device < 0 || device >= ggml_backend_cuda_get_device_count()) {
|
|
fprintf(stderr, "%s: error: invalid device %d\n", __func__, device);
|
|
return nullptr;
|
|
}
|
|
|
|
ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context(device);
|
|
if (ctx == nullptr) {
|
|
fprintf(stderr, "%s: error: failed to allocate context\n", __func__);
|
|
return nullptr;
|
|
}
|
|
|
|
ggml_backend_t cuda_backend = new ggml_backend {
|
|
/* .guid = */ ggml_backend_cuda_guid(),
|
|
/* .interface = */ ggml_backend_cuda_interface,
|
|
/* .context = */ ctx
|
|
};
|
|
|
|
return cuda_backend;
|
|
}
|
|
|
|
GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend) {
|
|
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid());
|
|
}
|
|
|
|
GGML_CALL int ggml_backend_cuda_get_device_count() {
|
|
return ggml_cuda_info().device_count;
|
|
}
|
|
|
|
GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) {
|
|
cudaDeviceProp prop;
|
|
CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
|
|
snprintf(description, description_size, "%s", prop.name);
|
|
}
|
|
|
|
GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) {
|
|
ggml_cuda_set_device(device);
|
|
|
|
CUDA_CHECK(cudaMemGetInfo(free, total));
|
|
}
|
|
|
|
GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
|
|
if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
#if CUDART_VERSION >= 11100
|
|
cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
|
|
if (err != cudaSuccess) {
|
|
// clear the error
|
|
cudaGetLastError();
|
|
|
|
fprintf(stderr, "%s: warning: failed to register %.2f MiB of pinned memory: %s\n", __func__,
|
|
size/1024.0/1024.0, cudaGetErrorString(err));
|
|
return false;
|
|
}
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
|
|
if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
|
|
return;
|
|
}
|
|
|
|
cudaError_t err = cudaHostUnregister(buffer);
|
|
if (err != cudaSuccess) {
|
|
// clear the error
|
|
cudaGetLastError();
|
|
}
|
|
}
|
|
|
|
// backend registry
|
|
GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) {
|
|
ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data);
|
|
return cuda_backend;
|
|
|
|
GGML_UNUSED(params);
|
|
}
|
|
|
|
extern "C" GGML_CALL int ggml_backend_cuda_reg_devices();
|
|
|
|
GGML_CALL int ggml_backend_cuda_reg_devices() {
|
|
int device_count = ggml_backend_cuda_get_device_count();
|
|
//int device_count = 1; // DEBUG: some tools require delaying CUDA initialization
|
|
for (int i = 0; i < device_count; i++) {
|
|
char name[128];
|
|
snprintf(name, sizeof(name), "%s%d", GGML_CUDA_NAME, i);
|
|
ggml_backend_register(name, ggml_backend_reg_cuda_init, ggml_backend_cuda_buffer_type(i), (void *) (intptr_t) i);
|
|
}
|
|
return device_count;
|
|
}
|