mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-02 17:25:45 +01:00
c27ac678dd
Added support for positional arguments `model` and `prompt`. Added functionality to download via strings like: llama-run llama3 llama-run ollama://granite-code llama-run ollama://granite-code:8b llama-run hf://QuantFactory/SmolLM-135M-GGUF/SmolLM-135M.Q2_K.gguf llama-run huggingface://bartowski/SmolLM-1.7B-Instruct-v0.2-GGUF/SmolLM-1.7B-Instruct-v0.2-IQ3_M.gguf llama-run https://example.com/some-file1.gguf llama-run some-file2.gguf llama-run file://some-file3.gguf Signed-off-by: Eric Curtin <ecurtin@redhat.com>
736 lines
24 KiB
C++
736 lines
24 KiB
C++
#if defined(_WIN32)
|
|
# include <windows.h>
|
|
#else
|
|
# include <unistd.h>
|
|
#endif
|
|
|
|
#if defined(LLAMA_USE_CURL)
|
|
# include <curl/curl.h>
|
|
#endif
|
|
|
|
#include <cstdarg>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <filesystem>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "common.h"
|
|
#include "json.hpp"
|
|
#include "llama-cpp.h"
|
|
|
|
#define printe(...) \
|
|
do { \
|
|
fprintf(stderr, __VA_ARGS__); \
|
|
} while (0)
|
|
|
|
class Opt {
|
|
public:
|
|
int init(int argc, const char ** argv) {
|
|
construct_help_str_();
|
|
// Parse arguments
|
|
if (parse(argc, argv)) {
|
|
printe("Error: Failed to parse arguments.\n");
|
|
help();
|
|
return 1;
|
|
}
|
|
|
|
// If help is requested, show help and exit
|
|
if (help_) {
|
|
help();
|
|
return 2;
|
|
}
|
|
|
|
return 0; // Success
|
|
}
|
|
|
|
std::string model_;
|
|
std::string user_;
|
|
int context_size_ = 2048, ngl_ = -1;
|
|
|
|
private:
|
|
std::string help_str_;
|
|
bool help_ = false;
|
|
|
|
void construct_help_str_() {
|
|
help_str_ =
|
|
"Description:\n"
|
|
" Runs a llm\n"
|
|
"\n"
|
|
"Usage:\n"
|
|
" llama-run [options] model [prompt]\n"
|
|
"\n"
|
|
"Options:\n"
|
|
" -c, --context-size <value>\n"
|
|
" Context size (default: " +
|
|
std::to_string(context_size_);
|
|
help_str_ +=
|
|
")\n"
|
|
" -n, --ngl <value>\n"
|
|
" Number of GPU layers (default: " +
|
|
std::to_string(ngl_);
|
|
help_str_ +=
|
|
")\n"
|
|
" -h, --help\n"
|
|
" Show help message\n"
|
|
"\n"
|
|
"Commands:\n"
|
|
" model\n"
|
|
" Model is a string with an optional prefix of \n"
|
|
" huggingface:// (hf://), ollama://, https:// or file://.\n"
|
|
" If no protocol is specified and a file exists in the specified\n"
|
|
" path, file:// is assumed, otherwise if a file does not exist in\n"
|
|
" the specified path, ollama:// is assumed. Models that are being\n"
|
|
" pulled are downloaded with .partial extension while being\n"
|
|
" downloaded and then renamed as the file without the .partial\n"
|
|
" extension when complete.\n"
|
|
"\n"
|
|
"Examples:\n"
|
|
" llama-run llama3\n"
|
|
" llama-run ollama://granite-code\n"
|
|
" llama-run ollama://smollm:135m\n"
|
|
" llama-run hf://QuantFactory/SmolLM-135M-GGUF/SmolLM-135M.Q2_K.gguf\n"
|
|
" llama-run huggingface://bartowski/SmolLM-1.7B-Instruct-v0.2-GGUF/SmolLM-1.7B-Instruct-v0.2-IQ3_M.gguf\n"
|
|
" llama-run https://example.com/some-file1.gguf\n"
|
|
" llama-run some-file2.gguf\n"
|
|
" llama-run file://some-file3.gguf\n"
|
|
" llama-run --ngl 99 some-file4.gguf\n"
|
|
" llama-run --ngl 99 some-file5.gguf Hello World\n";
|
|
}
|
|
|
|
int parse(int argc, const char ** argv) {
|
|
int positional_args_i = 0;
|
|
for (int i = 1; i < argc; ++i) {
|
|
if (strcmp(argv[i], "-c") == 0 || strcmp(argv[i], "--context-size") == 0) {
|
|
if (i + 1 >= argc) {
|
|
return 1;
|
|
}
|
|
|
|
context_size_ = std::atoi(argv[++i]);
|
|
} else if (strcmp(argv[i], "-n") == 0 || strcmp(argv[i], "--ngl") == 0) {
|
|
if (i + 1 >= argc) {
|
|
return 1;
|
|
}
|
|
|
|
ngl_ = std::atoi(argv[++i]);
|
|
} else if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "--help") == 0) {
|
|
help_ = true;
|
|
return 0;
|
|
} else if (!positional_args_i) {
|
|
++positional_args_i;
|
|
model_ = argv[i];
|
|
} else if (positional_args_i == 1) {
|
|
++positional_args_i;
|
|
user_ = argv[i];
|
|
} else {
|
|
user_ += " " + std::string(argv[i]);
|
|
}
|
|
}
|
|
|
|
return model_.empty(); // model_ is the only required value
|
|
}
|
|
|
|
void help() const { printf("%s", help_str_.c_str()); }
|
|
};
|
|
|
|
struct progress_data {
|
|
size_t file_size = 0;
|
|
std::chrono::steady_clock::time_point start_time = std::chrono::steady_clock::now();
|
|
bool printed = false;
|
|
};
|
|
|
|
struct FileDeleter {
|
|
void operator()(FILE * file) const {
|
|
if (file) {
|
|
fclose(file);
|
|
}
|
|
}
|
|
};
|
|
|
|
typedef std::unique_ptr<FILE, FileDeleter> FILE_ptr;
|
|
|
|
#ifdef LLAMA_USE_CURL
|
|
class CurlWrapper {
|
|
public:
|
|
int init(const std::string & url, const std::vector<std::string> & headers, const std::string & output_file,
|
|
const bool progress, std::string * response_str = nullptr) {
|
|
std::string output_file_partial;
|
|
curl = curl_easy_init();
|
|
if (!curl) {
|
|
return 1;
|
|
}
|
|
|
|
progress_data data;
|
|
FILE_ptr out;
|
|
if (!output_file.empty()) {
|
|
output_file_partial = output_file + ".partial";
|
|
out.reset(fopen(output_file_partial.c_str(), "ab"));
|
|
}
|
|
|
|
set_write_options(response_str, out);
|
|
data.file_size = set_resume_point(output_file_partial);
|
|
set_progress_options(progress, data);
|
|
set_headers(headers);
|
|
perform(url);
|
|
if (!output_file.empty()) {
|
|
std::filesystem::rename(output_file_partial, output_file);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
~CurlWrapper() {
|
|
if (chunk) {
|
|
curl_slist_free_all(chunk);
|
|
}
|
|
|
|
if (curl) {
|
|
curl_easy_cleanup(curl);
|
|
}
|
|
}
|
|
|
|
private:
|
|
CURL * curl = nullptr;
|
|
struct curl_slist * chunk = nullptr;
|
|
|
|
void set_write_options(std::string * response_str, const FILE_ptr & out) {
|
|
if (response_str) {
|
|
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, capture_data);
|
|
curl_easy_setopt(curl, CURLOPT_WRITEDATA, response_str);
|
|
} else {
|
|
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, write_data);
|
|
curl_easy_setopt(curl, CURLOPT_WRITEDATA, out.get());
|
|
}
|
|
}
|
|
|
|
size_t set_resume_point(const std::string & output_file) {
|
|
size_t file_size = 0;
|
|
if (std::filesystem::exists(output_file)) {
|
|
file_size = std::filesystem::file_size(output_file);
|
|
curl_easy_setopt(curl, CURLOPT_RESUME_FROM_LARGE, static_cast<curl_off_t>(file_size));
|
|
}
|
|
|
|
return file_size;
|
|
}
|
|
|
|
void set_progress_options(bool progress, progress_data & data) {
|
|
if (progress) {
|
|
curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 0L);
|
|
curl_easy_setopt(curl, CURLOPT_XFERINFODATA, &data);
|
|
curl_easy_setopt(curl, CURLOPT_XFERINFOFUNCTION, progress_callback);
|
|
}
|
|
}
|
|
|
|
void set_headers(const std::vector<std::string> & headers) {
|
|
if (!headers.empty()) {
|
|
if (chunk) {
|
|
curl_slist_free_all(chunk);
|
|
chunk = 0;
|
|
}
|
|
|
|
for (const auto & header : headers) {
|
|
chunk = curl_slist_append(chunk, header.c_str());
|
|
}
|
|
|
|
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, chunk);
|
|
}
|
|
}
|
|
|
|
void perform(const std::string & url) {
|
|
CURLcode res;
|
|
curl_easy_setopt(curl, CURLOPT_URL, url.c_str());
|
|
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);
|
|
curl_easy_setopt(curl, CURLOPT_DEFAULT_PROTOCOL, "https");
|
|
curl_easy_setopt(curl, CURLOPT_FAILONERROR, 1L);
|
|
res = curl_easy_perform(curl);
|
|
if (res != CURLE_OK) {
|
|
printe("curl_easy_perform() failed: %s\n", curl_easy_strerror(res));
|
|
}
|
|
}
|
|
|
|
static std::string human_readable_time(double seconds) {
|
|
int hrs = static_cast<int>(seconds) / 3600;
|
|
int mins = (static_cast<int>(seconds) % 3600) / 60;
|
|
int secs = static_cast<int>(seconds) % 60;
|
|
|
|
std::ostringstream out;
|
|
if (hrs > 0) {
|
|
out << hrs << "h " << std::setw(2) << std::setfill('0') << mins << "m " << std::setw(2) << std::setfill('0')
|
|
<< secs << "s";
|
|
} else if (mins > 0) {
|
|
out << mins << "m " << std::setw(2) << std::setfill('0') << secs << "s";
|
|
} else {
|
|
out << secs << "s";
|
|
}
|
|
|
|
return out.str();
|
|
}
|
|
|
|
static std::string human_readable_size(curl_off_t size) {
|
|
static const char * suffix[] = { "B", "KB", "MB", "GB", "TB" };
|
|
char length = sizeof(suffix) / sizeof(suffix[0]);
|
|
int i = 0;
|
|
double dbl_size = size;
|
|
if (size > 1024) {
|
|
for (i = 0; (size / 1024) > 0 && i < length - 1; i++, size /= 1024) {
|
|
dbl_size = size / 1024.0;
|
|
}
|
|
}
|
|
|
|
std::ostringstream out;
|
|
out << std::fixed << std::setprecision(2) << dbl_size << " " << suffix[i];
|
|
return out.str();
|
|
}
|
|
|
|
static int progress_callback(void * ptr, curl_off_t total_to_download, curl_off_t now_downloaded, curl_off_t,
|
|
curl_off_t) {
|
|
progress_data * data = static_cast<progress_data *>(ptr);
|
|
if (total_to_download <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
total_to_download += data->file_size;
|
|
const curl_off_t now_downloaded_plus_file_size = now_downloaded + data->file_size;
|
|
const curl_off_t percentage = (now_downloaded_plus_file_size * 100) / total_to_download;
|
|
const curl_off_t pos = (percentage / 5);
|
|
std::string progress_bar;
|
|
for (int i = 0; i < 20; ++i) {
|
|
progress_bar.append((i < pos) ? "█" : " ");
|
|
}
|
|
|
|
// Calculate download speed and estimated time to completion
|
|
const auto now = std::chrono::steady_clock::now();
|
|
const std::chrono::duration<double> elapsed_seconds = now - data->start_time;
|
|
const double speed = now_downloaded / elapsed_seconds.count();
|
|
const double estimated_time = (total_to_download - now_downloaded) / speed;
|
|
printe("\r%ld%% |%s| %s/%s %.2f MB/s %s ", percentage, progress_bar.c_str(),
|
|
human_readable_size(now_downloaded).c_str(), human_readable_size(total_to_download).c_str(),
|
|
speed / (1024 * 1024), human_readable_time(estimated_time).c_str());
|
|
fflush(stderr);
|
|
data->printed = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Function to write data to a file
|
|
static size_t write_data(void * ptr, size_t size, size_t nmemb, void * stream) {
|
|
FILE * out = static_cast<FILE *>(stream);
|
|
return fwrite(ptr, size, nmemb, out);
|
|
}
|
|
|
|
// Function to capture data into a string
|
|
static size_t capture_data(void * ptr, size_t size, size_t nmemb, void * stream) {
|
|
std::string * str = static_cast<std::string *>(stream);
|
|
str->append(static_cast<char *>(ptr), size * nmemb);
|
|
return size * nmemb;
|
|
}
|
|
};
|
|
#endif
|
|
|
|
class LlamaData {
|
|
public:
|
|
llama_model_ptr model;
|
|
llama_sampler_ptr sampler;
|
|
llama_context_ptr context;
|
|
std::vector<llama_chat_message> messages;
|
|
std::vector<std::string> msg_strs;
|
|
std::vector<char> fmtted;
|
|
|
|
int init(Opt & opt) {
|
|
model = initialize_model(opt);
|
|
if (!model) {
|
|
return 1;
|
|
}
|
|
|
|
context = initialize_context(model, opt.context_size_);
|
|
if (!context) {
|
|
return 1;
|
|
}
|
|
|
|
sampler = initialize_sampler();
|
|
return 0;
|
|
}
|
|
|
|
private:
|
|
#ifdef LLAMA_USE_CURL
|
|
int download(const std::string & url, const std::vector<std::string> & headers, const std::string & output_file,
|
|
const bool progress, std::string * response_str = nullptr) {
|
|
CurlWrapper curl;
|
|
if (curl.init(url, headers, output_file, progress, response_str)) {
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
int download(const std::string &, const std::vector<std::string> &, const std::string &, const bool,
|
|
std::string * = nullptr) {
|
|
printe("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
int huggingface_dl(const std::string & model, const std::vector<std::string> headers, const std::string & bn) {
|
|
// Find the second occurrence of '/' after protocol string
|
|
size_t pos = model.find('/');
|
|
pos = model.find('/', pos + 1);
|
|
if (pos == std::string::npos) {
|
|
return 1;
|
|
}
|
|
|
|
const std::string hfr = model.substr(0, pos);
|
|
const std::string hff = model.substr(pos + 1);
|
|
const std::string url = "https://huggingface.co/" + hfr + "/resolve/main/" + hff;
|
|
return download(url, headers, bn, true);
|
|
}
|
|
|
|
int ollama_dl(std::string & model, const std::vector<std::string> headers, const std::string & bn) {
|
|
if (model.find('/') == std::string::npos) {
|
|
model = "library/" + model;
|
|
}
|
|
|
|
std::string model_tag = "latest";
|
|
size_t colon_pos = model.find(':');
|
|
if (colon_pos != std::string::npos) {
|
|
model_tag = model.substr(colon_pos + 1);
|
|
model = model.substr(0, colon_pos);
|
|
}
|
|
|
|
std::string manifest_url = "https://registry.ollama.ai/v2/" + model + "/manifests/" + model_tag;
|
|
std::string manifest_str;
|
|
const int ret = download(manifest_url, headers, "", false, &manifest_str);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
nlohmann::json manifest = nlohmann::json::parse(manifest_str);
|
|
std::string layer;
|
|
for (const auto & l : manifest["layers"]) {
|
|
if (l["mediaType"] == "application/vnd.ollama.image.model") {
|
|
layer = l["digest"];
|
|
break;
|
|
}
|
|
}
|
|
|
|
std::string blob_url = "https://registry.ollama.ai/v2/" + model + "/blobs/" + layer;
|
|
return download(blob_url, headers, bn, true);
|
|
}
|
|
|
|
std::string basename(const std::string & path) {
|
|
const size_t pos = path.find_last_of("/\\");
|
|
if (pos == std::string::npos) {
|
|
return path;
|
|
}
|
|
|
|
return path.substr(pos + 1);
|
|
}
|
|
|
|
int remove_proto(std::string & model_) {
|
|
const std::string::size_type pos = model_.find("://");
|
|
if (pos == std::string::npos) {
|
|
return 1;
|
|
}
|
|
|
|
model_ = model_.substr(pos + 3); // Skip past "://"
|
|
return 0;
|
|
}
|
|
|
|
int resolve_model(std::string & model_) {
|
|
const std::string bn = basename(model_);
|
|
const std::vector<std::string> headers = { "--header",
|
|
"Accept: application/vnd.docker.distribution.manifest.v2+json" };
|
|
int ret = 0;
|
|
if (string_starts_with(model_, "file://") || std::filesystem::exists(bn)) {
|
|
remove_proto(model_);
|
|
} else if (string_starts_with(model_, "hf://") || string_starts_with(model_, "huggingface://")) {
|
|
remove_proto(model_);
|
|
ret = huggingface_dl(model_, headers, bn);
|
|
} else if (string_starts_with(model_, "ollama://")) {
|
|
remove_proto(model_);
|
|
ret = ollama_dl(model_, headers, bn);
|
|
} else if (string_starts_with(model_, "https://")) {
|
|
download(model_, headers, bn, true);
|
|
} else {
|
|
ret = ollama_dl(model_, headers, bn);
|
|
}
|
|
|
|
model_ = bn;
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Initializes the model and returns a unique pointer to it
|
|
llama_model_ptr initialize_model(Opt & opt) {
|
|
ggml_backend_load_all();
|
|
llama_model_params model_params = llama_model_default_params();
|
|
model_params.n_gpu_layers = opt.ngl_ >= 0 ? opt.ngl_ : model_params.n_gpu_layers;
|
|
resolve_model(opt.model_);
|
|
llama_model_ptr model(llama_load_model_from_file(opt.model_.c_str(), model_params));
|
|
if (!model) {
|
|
printe("%s: error: unable to load model from file: %s\n", __func__, opt.model_.c_str());
|
|
}
|
|
|
|
return model;
|
|
}
|
|
|
|
// Initializes the context with the specified parameters
|
|
llama_context_ptr initialize_context(const llama_model_ptr & model, const int n_ctx) {
|
|
llama_context_params ctx_params = llama_context_default_params();
|
|
ctx_params.n_ctx = n_ctx;
|
|
ctx_params.n_batch = n_ctx;
|
|
llama_context_ptr context(llama_new_context_with_model(model.get(), ctx_params));
|
|
if (!context) {
|
|
printe("%s: error: failed to create the llama_context\n", __func__);
|
|
}
|
|
|
|
return context;
|
|
}
|
|
|
|
// Initializes and configures the sampler
|
|
llama_sampler_ptr initialize_sampler() {
|
|
llama_sampler_ptr sampler(llama_sampler_chain_init(llama_sampler_chain_default_params()));
|
|
llama_sampler_chain_add(sampler.get(), llama_sampler_init_min_p(0.05f, 1));
|
|
llama_sampler_chain_add(sampler.get(), llama_sampler_init_temp(0.8f));
|
|
llama_sampler_chain_add(sampler.get(), llama_sampler_init_dist(LLAMA_DEFAULT_SEED));
|
|
|
|
return sampler;
|
|
}
|
|
};
|
|
|
|
// Add a message to `messages` and store its content in `msg_strs`
|
|
static void add_message(const char * role, const std::string & text, LlamaData & llama_data) {
|
|
llama_data.msg_strs.push_back(std::move(text));
|
|
llama_data.messages.push_back({ role, llama_data.msg_strs.back().c_str() });
|
|
}
|
|
|
|
// Function to apply the chat template and resize `formatted` if needed
|
|
static int apply_chat_template(LlamaData & llama_data, const bool append) {
|
|
int result = llama_chat_apply_template(
|
|
llama_data.model.get(), nullptr, llama_data.messages.data(), llama_data.messages.size(), append,
|
|
append ? llama_data.fmtted.data() : nullptr, append ? llama_data.fmtted.size() : 0);
|
|
if (append && result > static_cast<int>(llama_data.fmtted.size())) {
|
|
llama_data.fmtted.resize(result);
|
|
result = llama_chat_apply_template(llama_data.model.get(), nullptr, llama_data.messages.data(),
|
|
llama_data.messages.size(), append, llama_data.fmtted.data(),
|
|
llama_data.fmtted.size());
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// Function to tokenize the prompt
|
|
static int tokenize_prompt(const llama_model_ptr & model, const std::string & prompt,
|
|
std::vector<llama_token> & prompt_tokens) {
|
|
const int n_prompt_tokens = -llama_tokenize(model.get(), prompt.c_str(), prompt.size(), NULL, 0, true, true);
|
|
prompt_tokens.resize(n_prompt_tokens);
|
|
if (llama_tokenize(model.get(), prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true,
|
|
true) < 0) {
|
|
printe("failed to tokenize the prompt\n");
|
|
return -1;
|
|
}
|
|
|
|
return n_prompt_tokens;
|
|
}
|
|
|
|
// Check if we have enough space in the context to evaluate this batch
|
|
static int check_context_size(const llama_context_ptr & ctx, const llama_batch & batch) {
|
|
const int n_ctx = llama_n_ctx(ctx.get());
|
|
const int n_ctx_used = llama_get_kv_cache_used_cells(ctx.get());
|
|
if (n_ctx_used + batch.n_tokens > n_ctx) {
|
|
printf("\033[0m\n");
|
|
printe("context size exceeded\n");
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// convert the token to a string
|
|
static int convert_token_to_string(const llama_model_ptr & model, const llama_token token_id, std::string & piece) {
|
|
char buf[256];
|
|
int n = llama_token_to_piece(model.get(), token_id, buf, sizeof(buf), 0, true);
|
|
if (n < 0) {
|
|
printe("failed to convert token to piece\n");
|
|
return 1;
|
|
}
|
|
|
|
piece = std::string(buf, n);
|
|
return 0;
|
|
}
|
|
|
|
static void print_word_and_concatenate_to_response(const std::string & piece, std::string & response) {
|
|
printf("%s", piece.c_str());
|
|
fflush(stdout);
|
|
response += piece;
|
|
}
|
|
|
|
// helper function to evaluate a prompt and generate a response
|
|
static int generate(LlamaData & llama_data, const std::string & prompt, std::string & response) {
|
|
std::vector<llama_token> tokens;
|
|
if (tokenize_prompt(llama_data.model, prompt, tokens) < 0) {
|
|
return 1;
|
|
}
|
|
|
|
// prepare a batch for the prompt
|
|
llama_batch batch = llama_batch_get_one(tokens.data(), tokens.size());
|
|
llama_token new_token_id;
|
|
while (true) {
|
|
check_context_size(llama_data.context, batch);
|
|
if (llama_decode(llama_data.context.get(), batch)) {
|
|
printe("failed to decode\n");
|
|
return 1;
|
|
}
|
|
|
|
// sample the next token, check is it an end of generation?
|
|
new_token_id = llama_sampler_sample(llama_data.sampler.get(), llama_data.context.get(), -1);
|
|
if (llama_token_is_eog(llama_data.model.get(), new_token_id)) {
|
|
break;
|
|
}
|
|
|
|
std::string piece;
|
|
if (convert_token_to_string(llama_data.model, new_token_id, piece)) {
|
|
return 1;
|
|
}
|
|
|
|
print_word_and_concatenate_to_response(piece, response);
|
|
|
|
// prepare the next batch with the sampled token
|
|
batch = llama_batch_get_one(&new_token_id, 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int read_user_input(std::string & user) {
|
|
std::getline(std::cin, user);
|
|
return user.empty(); // Should have data in happy path
|
|
}
|
|
|
|
// Function to generate a response based on the prompt
|
|
static int generate_response(LlamaData & llama_data, const std::string & prompt, std::string & response) {
|
|
// Set response color
|
|
printf("\033[33m");
|
|
if (generate(llama_data, prompt, response)) {
|
|
printe("failed to generate response\n");
|
|
return 1;
|
|
}
|
|
|
|
// End response with color reset and newline
|
|
printf("\n\033[0m");
|
|
return 0;
|
|
}
|
|
|
|
// Helper function to apply the chat template and handle errors
|
|
static int apply_chat_template_with_error_handling(LlamaData & llama_data, const bool append, int & output_length) {
|
|
const int new_len = apply_chat_template(llama_data, append);
|
|
if (new_len < 0) {
|
|
printe("failed to apply the chat template\n");
|
|
return -1;
|
|
}
|
|
|
|
output_length = new_len;
|
|
return 0;
|
|
}
|
|
|
|
// Helper function to handle user input
|
|
static int handle_user_input(std::string & user_input, const std::string & user_) {
|
|
if (!user_.empty()) {
|
|
user_input = user_;
|
|
return 0; // No need for interactive input
|
|
}
|
|
|
|
printf(
|
|
"\r "
|
|
"\r\033[32m> \033[0m");
|
|
return read_user_input(user_input); // Returns true if input ends the loop
|
|
}
|
|
|
|
// Function to tokenize the prompt
|
|
static int chat_loop(LlamaData & llama_data, const std::string & user_) {
|
|
int prev_len = 0;
|
|
llama_data.fmtted.resize(llama_n_ctx(llama_data.context.get()));
|
|
while (true) {
|
|
// Get user input
|
|
std::string user_input;
|
|
while (handle_user_input(user_input, user_)) {
|
|
}
|
|
|
|
add_message("user", user_.empty() ? user_input : user_, llama_data);
|
|
int new_len;
|
|
if (apply_chat_template_with_error_handling(llama_data, true, new_len) < 0) {
|
|
return 1;
|
|
}
|
|
|
|
std::string prompt(llama_data.fmtted.begin() + prev_len, llama_data.fmtted.begin() + new_len);
|
|
std::string response;
|
|
if (generate_response(llama_data, prompt, response)) {
|
|
return 1;
|
|
}
|
|
|
|
if (!user_.empty()) {
|
|
break;
|
|
}
|
|
|
|
add_message("assistant", response, llama_data);
|
|
if (apply_chat_template_with_error_handling(llama_data, false, prev_len) < 0) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void log_callback(const enum ggml_log_level level, const char * text, void *) {
|
|
if (level == GGML_LOG_LEVEL_ERROR) {
|
|
printe("%s", text);
|
|
}
|
|
}
|
|
|
|
static bool is_stdin_a_terminal() {
|
|
#if defined(_WIN32)
|
|
HANDLE hStdin = GetStdHandle(STD_INPUT_HANDLE);
|
|
DWORD mode;
|
|
return GetConsoleMode(hStdin, &mode);
|
|
#else
|
|
return isatty(STDIN_FILENO);
|
|
#endif
|
|
}
|
|
|
|
static std::string read_pipe_data() {
|
|
std::ostringstream result;
|
|
result << std::cin.rdbuf(); // Read all data from std::cin
|
|
return result.str();
|
|
}
|
|
|
|
int main(int argc, const char ** argv) {
|
|
Opt opt;
|
|
const int ret = opt.init(argc, argv);
|
|
if (ret == 2) {
|
|
return 0;
|
|
} else if (ret) {
|
|
return 1;
|
|
}
|
|
|
|
if (!is_stdin_a_terminal()) {
|
|
if (!opt.user_.empty()) {
|
|
opt.user_ += "\n\n";
|
|
}
|
|
|
|
opt.user_ += read_pipe_data();
|
|
}
|
|
|
|
llama_log_set(log_callback, nullptr);
|
|
LlamaData llama_data;
|
|
if (llama_data.init(opt)) {
|
|
return 1;
|
|
}
|
|
|
|
if (chat_loop(llama_data, opt.user_)) {
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|