mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-11-01 07:30:17 +01:00
0d56246f4b
* ggml : group all experts in a single ggml_mul_mat_id cuda : improve mmid row copy * cuda : fix bin bcast with non-cont src0 * test-backend-ops : only run all mul mat tests for base types * llama : disable moe offloading with SYCL --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> |
||
---|---|---|
.. | ||
CMakeLists.txt | ||
imatrix.cpp | ||
README.md |
llama.cpp/examples/imatrix
Compute an importance matrix for a model and given text dataset. Can be used during quantization to enchance the quality of the quantum models. More information is available here: https://github.com/ggerganov/llama.cpp/pull/4861
Usage
./imatrix -m <some_fp_model> -f <some_training_data> [-o <output_file>] [--verbosity <verbosity_level>]
[-ofreq num_chunks] [-ow <0 or 1>] [other common params]
Here -m
with a model name and -f
with a file containing training data (such as e.g. wiki.train.raw
) are mandatory.
The parameters in square brackets are optional and have the following meaning:
-o
(or--output-file
) specifies the name of the file where the computed data will be stored. If missingimatrix.dat
is used.--verbosity
specifies the verbosity level. If set to0
, no output other than the perplexity of the processed chunks will be generated. If set to1
, each time the results are saved a message is written tostderr
. If>=2
, a message is output each time data is collected for any tensor. Default verbosity level is1
.-ofreq
(or--output-frequency
) specifies how often the so far computed result is saved to disk. Default is 10 (i.e., every 10 chunks)-ow
(or--output-weight
) specifies if data will be collected for theoutput.weight
tensor. My experience is that it is better to not utilize the importance matrix when quantizingoutput.weight
, so this is set tofalse
by default.
For faster computation, make sure to use GPU offloading via the -ngl
argument
Example
LLAMA_CUDA=1 make -j
# generate importance matrix (imatrix.dat)
./imatrix -m ggml-model-f16.gguf -f train-data.txt -ngl 99
# use the imatrix to perform a Q4_K_M quantization
./quantize --imatrix imatrix.dat ggml-model-f16.gguf ./ggml-model-q4_k_m.gguf q4_k_m