8cc91dc63c
This change upstreams llamafile's cpu matrix multiplication kernels which improve image and prompt evaluation speed. For starters, Q4_0 and Q8_0 weights should go ~40% faster on CPU. The biggest benefits are with data types like f16 / f32, which process prompts 2x faster thus making them faster than quantized data types for prompt evals. This change also introduces bona fide AVX512 support since tinyBLAS is able to exploit the larger register file. For example, on my CPU llama.cpp llava-cli processes an image prompt at 305 tokens/second, using the Q4_K and Q4_0 types, which has always been faster than if we used f16 LLaVA weights, which at HEAD go 188 tokens/second. With this change, f16 LLaVA performance leap frogs to 464 tokens/second. On Intel Core i9-14900K this change improves F16 prompt perf by 5x. For example, using llama.cpp at HEAD with Mistral 7b f16 to process a 215 token prompt will go 13 tok/sec. This change has fixes making it go 52 tok/sec. It's mostly thanks to my vectorized outer product kernels but also because I added support for correctly counting the number of cores on Alderlake, so the default thread count discounts Intel's new efficiency cores. Only Linux right now can count cores. This work was sponsored by Mozilla who's given permission to change the license of this code from Apache 2.0 to MIT. To read more about what's improved, and how it works, see: https://justine.lol/matmul/ |
||
---|---|---|
.. | ||
CMakeLists.txt | ||
llama-bench.cpp | ||
README.md |
llama.cpp/example/llama-bench
Performance testing tool for llama.cpp.
Table of contents
Syntax
usage: ./llama-bench [options]
options:
-h, --help
-m, --model <filename> (default: models/7B/ggml-model-q4_0.gguf)
-p, --n-prompt <n> (default: 512)
-n, --n-gen <n> (default: 128)
-b, --batch-size <n> (default: 512)
-ctk <t>, --cache-type-k <t> (default: f16)
-ctv <t>, --cache-type-v <t> (default: f16)
-t, --threads <n> (default: 112)
-ngl, --n-gpu-layers <n> (default: 99)
-sm, --split-mode <none|layer|row> (default: layer)
-mg, --main-gpu <i> (default: 0)
-nkvo, --no-kv-offload <0|1> (default: 0)
-mmp, --mmap <0|1> (default: 1)
-ts, --tensor_split <ts0/ts1/..> (default: 0)
-r, --repetitions <n> (default: 5)
-o, --output <csv|json|md|sql> (default: md)
-v, --verbose (default: 0)
Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.
llama-bench can perform two types of tests:
- Prompt processing (pp): processing a prompt in batches (
-p
) - Text generation (tg): generating a sequence of tokens (
-n
)
With the exception of -r
, -o
and -v
, all options can be specified multiple times to run multiple tests. Each pp and tg test is run with all combinations of the specified options. To specify multiple values for an option, the values can be separated by commas (e.g. -n 16,32
), or the option can be specified multiple times (e.g. -n 16 -n 32
).
Each test is repeated the number of times given by -r
, and the results are averaged. The results are given in average tokens per second (t/s) and standard deviation. Some output formats (e.g. json) also include the individual results of each repetition.
For a description of the other options, see the main example.
Note:
- When using SYCL backend, there would be hang issue in some cases. Please set
--mmp 0
.
Examples
Text generation with different models
$ ./llama-bench -m models/7B/ggml-model-q4_0.gguf -m models/13B/ggml-model-q4_0.gguf -p 0 -n 128,256,512
model | size | params | backend | ngl | test | t/s |
---|---|---|---|---|---|---|
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | tg 128 | 132.19 ± 0.55 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | tg 256 | 129.37 ± 0.54 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | tg 512 | 123.83 ± 0.25 |
llama 13B mostly Q4_0 | 6.86 GiB | 13.02 B | CUDA | 99 | tg 128 | 82.17 ± 0.31 |
llama 13B mostly Q4_0 | 6.86 GiB | 13.02 B | CUDA | 99 | tg 256 | 80.74 ± 0.23 |
llama 13B mostly Q4_0 | 6.86 GiB | 13.02 B | CUDA | 99 | tg 512 | 78.08 ± 0.07 |
Prompt processing with different batch sizes
$ ./llama-bench -n 0 -p 1024 -b 128,256,512,1024
model | size | params | backend | ngl | n_batch | test | t/s |
---|---|---|---|---|---|---|---|
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | 128 | pp 1024 | 1436.51 ± 3.66 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | 256 | pp 1024 | 1932.43 ± 23.48 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | 512 | pp 1024 | 2254.45 ± 15.59 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | 1024 | pp 1024 | 2498.61 ± 13.58 |
Different numbers of threads
$ ./llama-bench -n 0 -n 16 -p 64 -t 1,2,4,8,16,32
model | size | params | backend | threads | test | t/s |
---|---|---|---|---|---|---|
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 1 | pp 64 | 6.17 ± 0.07 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 1 | tg 16 | 4.05 ± 0.02 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 2 | pp 64 | 12.31 ± 0.13 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 2 | tg 16 | 7.80 ± 0.07 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 4 | pp 64 | 23.18 ± 0.06 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 4 | tg 16 | 12.22 ± 0.07 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 8 | pp 64 | 32.29 ± 1.21 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 8 | tg 16 | 16.71 ± 0.66 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 16 | pp 64 | 33.52 ± 0.03 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 16 | tg 16 | 15.32 ± 0.05 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 32 | pp 64 | 59.00 ± 1.11 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 32 | tg 16 | 16.41 ± 0.79 |
Different numbers of layers offloaded to the GPU
$ ./llama-bench -ngl 10,20,30,31,32,33,34,35
model | size | params | backend | ngl | test | t/s |
---|---|---|---|---|---|---|
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 10 | pp 512 | 373.36 ± 2.25 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 10 | tg 128 | 13.45 ± 0.93 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 20 | pp 512 | 472.65 ± 1.25 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 20 | tg 128 | 21.36 ± 1.94 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 30 | pp 512 | 631.87 ± 11.25 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 30 | tg 128 | 40.04 ± 1.82 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 31 | pp 512 | 657.89 ± 5.08 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 31 | tg 128 | 48.19 ± 0.81 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 32 | pp 512 | 688.26 ± 3.29 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 32 | tg 128 | 54.78 ± 0.65 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 33 | pp 512 | 704.27 ± 2.24 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 33 | tg 128 | 60.62 ± 1.76 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 34 | pp 512 | 881.34 ± 5.40 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 34 | tg 128 | 71.76 ± 0.23 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 35 | pp 512 | 2400.01 ± 7.72 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 35 | tg 128 | 131.66 ± 0.49 |
Output formats
By default, llama-bench outputs the results in markdown format. The results can be output in other formats by using the -o
option.
Markdown
$ ./llama-bench -o md
model | size | params | backend | ngl | test | t/s |
---|---|---|---|---|---|---|
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | pp 512 | 2368.80 ± 93.24 |
llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | tg 128 | 131.42 ± 0.59 |
CSV
$ ./llama-bench -o csv
build_commit,build_number,cuda,opencl,metal,gpu_blas,blas,cpu_info,gpu_info,model_filename,model_type,model_size,model_n_params,n_batch,n_threads,f16_kv,n_gpu_layers,main_gpu,mul_mat_q,tensor_split,n_prompt,n_gen,test_time,avg_ns,stddev_ns,avg_ts,stddev_ts
"3469684","1275","1","0","0","1","1","13th Gen Intel(R) Core(TM) i9-13900K","NVIDIA GeForce RTX 3090 Ti","models/7B/ggml-model-q4_0.gguf","llama 7B mostly Q4_0","3825065984","6738415616","512","16","1","99","0","1","0.00","512","0","2023-09-23T12:09:01Z","212155977","732372","2413.341687","8.305961"
"3469684","1275","1","0","0","1","1","13th Gen Intel(R) Core(TM) i9-13900K","NVIDIA GeForce RTX 3090 Ti","models/7B/ggml-model-q4_0.gguf","llama 7B mostly Q4_0","3825065984","6738415616","512","16","1","99","0","1","0.00","0","128","2023-09-23T12:09:02Z","969320879","2728399","132.052051","0.371342"
JSON
$ ./llama-bench -o json
[
{
"build_commit": "3469684",
"build_number": 1275,
"cuda": true,
"opencl": false,
"metal": false,
"gpu_blas": true,
"blas": true,
"cpu_info": "13th Gen Intel(R) Core(TM) i9-13900K",
"gpu_info": "NVIDIA GeForce RTX 3090 Ti",
"model_filename": "models/7B/ggml-model-q4_0.gguf",
"model_type": "llama 7B mostly Q4_0",
"model_size": 3825065984,
"model_n_params": 6738415616,
"n_batch": 512,
"n_threads": 16,
"f16_kv": true,
"n_gpu_layers": 99,
"main_gpu": 0,
"mul_mat_q": true,
"tensor_split": "0.00",
"n_prompt": 512,
"n_gen": 0,
"test_time": "2023-09-23T12:09:57Z",
"avg_ns": 212365953,
"stddev_ns": 985423,
"avg_ts": 2410.974041,
"stddev_ts": 11.163766,
"samples_ns": [ 213837238, 211635853, 212328053, 211329715, 212698907 ],
"samples_ts": [ 2394.34, 2419.25, 2411.36, 2422.75, 2407.16 ]
},
{
"build_commit": "3469684",
"build_number": 1275,
"cuda": true,
"opencl": false,
"metal": false,
"gpu_blas": true,
"blas": true,
"cpu_info": "13th Gen Intel(R) Core(TM) i9-13900K",
"gpu_info": "NVIDIA GeForce RTX 3090 Ti",
"model_filename": "models/7B/ggml-model-q4_0.gguf",
"model_type": "llama 7B mostly Q4_0",
"model_size": 3825065984,
"model_n_params": 6738415616,
"n_batch": 512,
"n_threads": 16,
"f16_kv": true,
"n_gpu_layers": 99,
"main_gpu": 0,
"mul_mat_q": true,
"tensor_split": "0.00",
"n_prompt": 0,
"n_gen": 128,
"test_time": "2023-09-23T12:09:59Z",
"avg_ns": 977425219,
"stddev_ns": 9268593,
"avg_ts": 130.965708,
"stddev_ts": 1.238924,
"samples_ns": [ 984472709, 974901233, 989474741, 970729355, 967548060 ],
"samples_ts": [ 130.019, 131.295, 129.362, 131.86, 132.293 ]
}
]
SQL
SQL output is suitable for importing into a SQLite database. The output can be piped into the sqlite3
command line tool to add the results to a database.
$ ./llama-bench -o sql
CREATE TABLE IF NOT EXISTS test (
build_commit TEXT,
build_number INTEGER,
cuda INTEGER,
opencl INTEGER,
metal INTEGER,
gpu_blas INTEGER,
blas INTEGER,
cpu_info TEXT,
gpu_info TEXT,
model_filename TEXT,
model_type TEXT,
model_size INTEGER,
model_n_params INTEGER,
n_batch INTEGER,
n_threads INTEGER,
f16_kv INTEGER,
n_gpu_layers INTEGER,
main_gpu INTEGER,
mul_mat_q INTEGER,
tensor_split TEXT,
n_prompt INTEGER,
n_gen INTEGER,
test_time TEXT,
avg_ns INTEGER,
stddev_ns INTEGER,
avg_ts REAL,
stddev_ts REAL
);
INSERT INTO test (build_commit, build_number, cuda, opencl, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '512', '0', '2023-09-23T12:10:30Z', '212693772', '743623', '2407.240204', '8.409634');
INSERT INTO test (build_commit, build_number, cuda, opencl, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '0', '128', '2023-09-23T12:10:31Z', '977925003', '4037361', '130.891159', '0.537692');