mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-23 18:09:18 +01:00
1442677f92
* common : gpt_params_parse do not print usage * common : rework usage print (wip) * common : valign * common : rework print_usage * infill : remove cfg support * common : reorder args * server : deduplicate parameters ggml-ci * common : add missing header ggml-ci * common : remote --random-prompt usages ggml-ci * examples : migrate to gpt_params ggml-ci * batched-bench : migrate to gpt_params * retrieval : migrate to gpt_params * common : change defaults for escape and n_ctx * common : remove chatml and instruct params ggml-ci * common : passkey use gpt_params |
||
---|---|---|
.. | ||
CMakeLists.txt | ||
eval-callback.cpp | ||
README.md |
llama.cpp/examples/eval-callback
A simple example which demonstrates how to use callback during the inference. It simply prints to the console all operations and tensor data.
Usage:
eval-callback \
--hf-repo ggml-org/models \
--hf-file phi-2/ggml-model-q4_0.gguf \
--model phi-2-q4_0.gguf \
--prompt hello \
--seed 42 \
-ngl 33
Will print:
llm_load_tensors: offloaded 33/33 layers to GPU
...
llama_new_context_with_model: n_ctx = 512
...
llama_new_context_with_model: CUDA0 compute buffer size = 105.00 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 6.01 MiB
llama_new_context_with_model: graph nodes = 1225
llama_new_context_with_model: graph splits = 2
ggml_debug: inp_embd = (f32) GET_ROWS(token_embd.weight{2560, 51200, 1, 1}, inp_tokens{1, 1, 1, 1}}) = {2560, 1, 1, 1}
[
[
[ -0.0181, 0.0272, 0.0272, ...],
],
]
ggml_debug: norm-0 = (f32) NORM(CUDA0#inp_embd#0{2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
[
[
[ -0.6989, 1.0636, 1.0636, ...],
],
]
ggml_debug: norm_w-0 = (f32) MUL(norm-0{2560, 1, 1, 1}, blk.0.attn_norm.weight{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
[
[
[ -0.1800, 0.2817, 0.2632, ...],
],
]
ggml_debug: attn_norm-0 = (f32) ADD(norm_w-0{2560, 1, 1, 1}, blk.0.attn_norm.bias{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
[
[
[ -0.1863, 0.2970, 0.2604, ...],
],
]
ggml_debug: wqkv-0 = (f32) MUL_MAT(blk.0.attn_qkv.weight{2560, 7680, 1, 1}, attn_norm-0{2560, 1, 1, 1}}) = {7680, 1, 1, 1}
[
[
[ -1.1238, 1.2876, -1.8086, ...],
],
]
ggml_debug: bqkv-0 = (f32) ADD(wqkv-0{7680, 1, 1, 1}, blk.0.attn_qkv.bias{7680, 1, 1, 1}}) = {7680, 1, 1, 1}
[
[
[ -1.1135, 1.4604, -1.9226, ...],
],
]
ggml_debug: bqkv-0 (view) = (f32) VIEW(bqkv-0{7680, 1, 1, 1}, }) = {2560, 1, 1, 1}
[
[
[ -1.1135, 1.4604, -1.9226, ...],
],
]
ggml_debug: Qcur-0 = (f32) CONT(bqkv-0 (view){2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
[
[
[ -1.1135, 1.4604, -1.9226, ...],
],
]
ggml_debug: Qcur-0 (reshaped) = (f32) RESHAPE(Qcur-0{2560, 1, 1, 1}, }) = {80, 32, 1, 1}
[
[
[ -1.1135, 1.4604, -1.9226, ...],
[ -0.3608, 0.5076, -1.8866, ...],
[ 1.7643, 0.0273, -2.1065, ...],
...
],
]
ggml_debug: Qcur-0 = (f32) ROPE(Qcur-0 (reshaped){80, 32, 1, 1}, CUDA0#inp_pos#0{1, 1, 1, 1}}) = {80, 32, 1, 1}
[
[
[ -1.1135, 1.4604, -1.9226, ...],
[ -0.3608, 0.5076, -1.8866, ...],
[ 1.7643, 0.0273, -2.1065, ...],
...
],
]