llama.cpp/examples/cvector-generator/pca.hpp
Calvin Laurenson 43b35e38ba
Add support for sqrt on CUDA (#7953)
* cuda sqrt support

* enable cuda in pca

* fix comments in pca

* add test

* add sqrt to ggml_backend_cuda_supports_op

* fix test

* new line

* Use F32 sqrtf instead of F64 sqrt

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-06-17 00:23:04 +02:00

323 lines
11 KiB
C++

#include "common.h"
#include "llama.h"
#include "ggml.h"
#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#include <cstdio>
#include <ctime>
#include <string>
#include <tuple>
#include <vector>
#include <algorithm>
#include <iostream>
#include <fstream>
#define DEBUG_POS 5
static void print_debug_tensor(struct ggml_tensor * t, bool with_data = true) {
printf("%s: %s (%s): [%d, %d]\n", __func__, t->name, ggml_type_name(t->type), (int) t->ne[0], (int) t->ne[1]);
if (!with_data) return;
printf("%s: %s[0] = [", __func__, t->name);
for (size_t i = 0; i <= DEBUG_POS; i++) {
printf(" %f,", ggml_get_f32_nd(t, i, 0, 0, 0));
}
printf(" ... ]\n");
}
namespace PCA {
// input params for PCA computations
struct pca_params {
int n_threads = 1;
int n_batch = 20; // number of iterations do to in one batch. larger the batch, more memory is used
int n_iterations = 1000;
float tolerance = 1e-7;
// for debugging
int i_layer = 0;
int n_layers = 0;
};
// result from each iteration
struct pca_result {
struct ggml_tensor * calculated_square = NULL;
std::vector<struct ggml_tensor *> eigenvectors;
std::vector<float> distances;
};
struct pca_model {
ggml_backend_t backend = NULL;
ggml_backend_buffer_t buffer;
struct ggml_context * ctx; // context to compute graph on target device
struct ggml_context * ctx_host; // host context to store results
// tensors on target device
struct ggml_tensor * dev_input;
struct ggml_tensor * dev_square;
struct ggml_tensor * dev_eigenvector;
pca_model(struct ggml_tensor * t_input) {
#ifdef GGML_USE_CUDA
fprintf(stderr, "%s: using CUDA backend\n", __func__);
backend = ggml_backend_cuda_init(0); // init device 0
if (!backend) {
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
}
#endif
// TODO: enable Metal support when support for GGML_OP_SQRT is added
// #ifdef GGML_USE_METAL
// fprintf(stderr, "%s: using Metal backend\n", __func__);
// backend = ggml_backend_metal_init();
// if (!backend) {
// fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
// }
// #endif
// if there aren't GPU Backends fallback to CPU backend
if (!backend) {
backend = ggml_backend_cpu_init();
}
const int num_tensors = 4;
struct ggml_init_params params {
/*.mem_size =*/ ggml_tensor_overhead() * num_tensors,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ctx = ggml_init(params);
auto n_samples = t_input->ne[0];
auto n_embd = t_input->ne[1];
dev_input = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_samples, n_embd);
dev_square = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
dev_eigenvector = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
ggml_set_name(dev_input, "dev_input");
ggml_set_name(dev_square, "dev_square");
ggml_set_name(dev_eigenvector, "dev_eigenvector");
buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
ggml_backend_tensor_set(dev_input, t_input->data, 0, ggml_nbytes(t_input));
// initialize eigenvector to random normalized vector
{
std::vector<float> random_vec(ggml_nelements(dev_eigenvector), 0.0);
std::default_random_engine generator(static_cast<unsigned int>(std::time(0)));
std::uniform_real_distribution<float> distribution(0.0, 1.0);
float sum_sqr = 0.0; // for normalizing random_vec
for (size_t i = 0; i < random_vec.size(); ++i) {
float f = distribution(generator);
sum_sqr += f * f;
random_vec[i] = f;
}
// normalize it
float random_vec_norm = std::sqrt(sum_sqr);
for (size_t i = 0; i < random_vec.size(); ++i) {
random_vec[i] /= random_vec_norm;
}
ggml_backend_tensor_set(dev_eigenvector, random_vec.data(), 0, ggml_nbytes(dev_eigenvector));
}
}
~pca_model() {
ggml_free(ctx);
ggml_backend_buffer_free(buffer);
ggml_backend_free(backend);
}
};
static struct ggml_cgraph * build_graph_piter(
const struct pca_params & params,
const pca_model & model,
bool calc_square = false) {
GGML_ASSERT(params.n_batch > 0);
// TODO: buf_size must be able to scale with params.n_batch
static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
static std::vector<uint8_t> buf(buf_size);
struct ggml_init_params params0 = {
/*.mem_size =*/ buf_size,
/*.mem_buffer =*/ buf.data(),
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_allocr_alloc_graph()
};
// create a temporally context to build the graph
struct ggml_context * ctx0 = ggml_init(params0);
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
// turn v_diff_original into square matrix if needed
struct ggml_tensor * tmp_square;
if (calc_square) {
tmp_square = ggml_mul_mat(ctx0, model.dev_input, model.dev_input);
ggml_set_name(tmp_square, "tmp_square");
}
struct ggml_tensor * b_tensor;
struct ggml_tensor * distance;
struct ggml_tensor * old_eigen = model.dev_eigenvector;
struct ggml_tensor * input_square = calc_square ? tmp_square : model.dev_square;
for (int i = 0; i < params.n_batch; ++i) {
// b_tensor = square * eigenvector^T
b_tensor = ggml_mul_mat(ctx0, input_square, old_eigen);
ggml_set_name(b_tensor, "b_tensor");
// normalize
b_tensor = ggml_div_inplace(ctx0,
b_tensor,
ggml_sqrt_inplace(ctx0, ggml_sum_rows(ctx0, ggml_sqr(ctx0, b_tensor)))
);
ggml_format_name(b_tensor, "b_tensor_norm_%d", i);
// calculate distance(new eigenvector - old eigenvector)
// we don't use ggml_sub because it may not be implemented on GPU backend
struct ggml_tensor * new_sub_old = ggml_add(ctx0, old_eigen, ggml_scale(ctx0, b_tensor, -1));
distance = ggml_sqrt_inplace(ctx0,
ggml_sum_rows(ctx0, ggml_sqr_inplace(ctx0, new_sub_old)));
ggml_format_name(distance, "distance_%d", i);
old_eigen = b_tensor;
// build operations nodes
ggml_build_forward_expand(gf, distance);
}
// delete the temporally context used to build the graph
ggml_free(ctx0);
return gf;
}
static ggml_status compute_piter(
const struct pca_params & params,
const pca_model & model,
struct ggml_cgraph * gf,
ggml_gallocr_t allocr,
struct pca_result & result) {
// allocate tensors
ggml_gallocr_alloc_graph(allocr, gf);
if (ggml_backend_is_cpu(model.backend)) {
ggml_backend_cpu_set_n_threads(model.backend, params.n_threads);
}
// TODO: enable GPU support when support for GGML_OP_SQRT is added
//#ifdef GGML_USE_METAL
// if (ggml_backend_is_metal(model.backend)) {
// ggml_backend_metal_set_n_cb(model.backend, params.n_threads);
// }
//#endif
ggml_status res = ggml_backend_graph_compute(model.backend, gf);
if (res == GGML_STATUS_SUCCESS) {
auto extract_i = [](std::string prefix, std::string str) -> int {
int i = -1;
if (str.rfind(prefix, 0) == 0) {
sscanf(str.c_str(), (prefix + "%d").c_str(), &i);
}
return i;
};
result.calculated_square = NULL;
result.eigenvectors.clear();
result.distances.clear();
result.eigenvectors.resize(params.n_batch);
result.distances.resize(params.n_batch);
// get output nodes
for (int i = 0; i < gf->n_nodes; ++i) {
auto node = gf->nodes[i];
int iter = -1;
// find b_tensor (without copying data from device)
if ((iter = extract_i("b_tensor_norm_", node->name)) > -1) {
result.eigenvectors[iter] = node;
}
// find distances, then copy data from device
if ((iter = extract_i("distance_", node->name)) > -1) {
float d;
ggml_backend_tensor_get(node, &d, 0, sizeof(float));
result.distances[iter] = d;
// std::cout << node->name << " = " << d << "\n";
}
// find tmp_square if it exists (without copying data from device)
if (std::string(node->name) == "tmp_square") {
result.calculated_square = node;
}
}
}
return res;
}
static void power_iteration(
const struct pca_params & params,
struct ggml_tensor * input, // shape of input: [n_samples, n_embd]
struct ggml_tensor * output) {
//printf("in power iteration\n");
struct pca_model model(input);
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
struct pca_result result;
struct ggml_tensor * last_eigenvector = NULL;
int n_iters = params.n_iterations / params.n_batch; // more batch, fewer iterations
for (int iter = 0; iter < n_iters; ++iter) {
bool calc_square = (iter == 0); // only need to calculate square for first iteration
struct ggml_cgraph * gf = build_graph_piter(params, model, calc_square);
// ggml_graph_dump_dot(gf, nullptr, "/tmp/_cgraph.dot");
compute_piter(params, model, gf, allocr, result);
for (size_t k = 0; k < result.distances.size(); ++k) {
last_eigenvector = result.eigenvectors[k];
if (result.distances[k] < params.tolerance) {
break; // done
}
}
if (calc_square) {
// copy and store the square matrix if needed
GGML_ASSERT(result.calculated_square != NULL);
ggml_backend_tensor_copy(result.calculated_square, model.dev_square);
}
{
// copy last eigen vector and store as input for next iteration
GGML_ASSERT(last_eigenvector != NULL);
ggml_backend_tensor_copy(last_eigenvector, model.dev_eigenvector);
}
printf("%s: layer %d/%d, iteration: %d / total: %d (batch = %d) ...\n",
__func__, params.i_layer+1, params.n_layers, iter, n_iters, params.n_batch);
}
// get output tensor
GGML_ASSERT(last_eigenvector);
ggml_backend_tensor_get(last_eigenvector, output->data, 0, ggml_nbytes(last_eigenvector));
//print_debug_tensor(output);
ggml_gallocr_free(allocr);
}
static void run_pca(
struct pca_params & params,
const std::vector<struct ggml_tensor *> & v_input, // shape of v_input[0]: [n_samples, n_embd]
const std::vector<struct ggml_tensor *> & v_output) {
printf("%s: Running PCA...\n", __func__);
for (size_t il = 0; il < v_input.size(); ++il) {
// prepare output vector
struct ggml_tensor * ctrl_out = v_output[il];
ggml_format_name(ctrl_out, "direction.%ld", il+1);
// run power_iteration
params.i_layer = il;
params.n_layers = v_input.size();
power_iteration(params, v_input[il], ctrl_out);
printf("%s: Done layer %d / %d\n", __func__, (int) il+1, (int) v_input.size());
}
}
}